• Title/Summary/Keyword: Dynamic flow control

Search Result 578, Processing Time 0.04 seconds

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing (실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가)

  • Ryu, Seong-Ryong;Cheong, Chang-Heon;Cho, Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

Simulation Model for Dynamic Performance Analysis of UPFC (UPFC의 동적 성능해석을 위한 시뮬레이션 모형)

  • Han, Byung-Moon;Choi, Dae-Gil;Shin, Ik-Shang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.479-481
    • /
    • 1996
  • This paper describes a simulation model to analyze the dynamic performance of Unified Power Flow Controller which ran flexibly adjust the active and reactive power flow through the ac transmission line. An equivalent circuit to analyze the basic principle for the whole system operation was developed and a control system for the Unified Power Flow Controller was derived using vector control method. A computer simulation model with EMTP code was also conceived to evaluate the performance of the Unified power Flow Controller. The simulation results show that Unified Power flow Controller is very effective for controlling the power flow and damping the subsynchronous resonance in the power system.

  • PDF

Performance Analysis of UPFC by Simulation & Scaled Hardware Model (시뮬레이션과 축소모형에 의한 UPFC의 성능해석)

  • Park, Ji-Yong;Baek, Seung-Taek;Kim, Hui-Jong;Han, Byeong-Mun;Han, Hak-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.579-586
    • /
    • 1999
  • This paper describes a simulation model and a scaled hardware model to analyze the dynamic performance of Unified Power Flow Controller, which can flexibly adjust the active power flow through the ac transmission line. The design of control system for UPFC was developed using vector control method. The results of simulation and scaled hardware test show that the developed control system works accurately. Both models would be very effective for analyzing the dynamic performance of the Unified Power Flow Controller.

  • PDF

Study of the dynamic characteristics of a hydraulic power supply (유압공급장치의 동특성에 관한 연구)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1172-1177
    • /
    • 1993
  • Dynamic characteristics of a hydraulic power supply are studied theoretically and computationally. The transfer function between the supply pressure and the load flow is derived considering relief valve dynamics, accumulator dynamics, and flow line dynamics. Frequency responses and time responses are obtained in many conditions using the transfer function and nonlinear mathematical model respectively.

  • PDF

Experimental Analysis of the Static and Dynamic Characteristics for a Pilot Proportional Pressure Control Valve (파일럿 비례압력제어밸브의 정특성 및 동특성에 관한 실험적 분석)

  • Jeong, H.S.;Nam, J.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.9-16
    • /
    • 2011
  • Because of the increasing demand on the high precision and high response of a machinery, proportional control valves are widely adopted at various application fields. This paper studies on the static and dynamic characteristics of a pilot proportional pressure control valve. An experimental apparatus including hydraulic pump, variable speed inverter, pressure and flow sensors and data aquisition system was set up. And various experiments such as P-Q-V curves, step responses due to input voltage and flow rate, hysteresis, frequency response of the proportional valve was carried out and the results are discussed.

A Design for Dynamic Line Rating System to increase Overhead Transmission Line Capacities (가공송전선의 송전용량을 증가시키기 위한 동적송전용량 시스템의 설계)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.72-77
    • /
    • 2011
  • Dynamic Line Rating (DLR) techniques have been greatly worthy of notice for efficiently increasing transmission capacity as well as controlling load-flow in overhead transmission lines, in comparison with the existing power system operating with Static Line Rating (SLR). This paper describes an utilization method to implement DLR control system for old transmission lines built in the first stage using the ground clearance design standard with lower dips. The suggested DLR system is focused on designing as temperature control system rather than current/load control system. Based on several performance for conductor temperatures, it is shown that DLR system with efficiency can be implemented.

Load Flow Calculation and Short Circuit Fault Transients in AC Electrified Railways

  • Hosseini, Seyed Hossein;Shahnia, Farhad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2203-2206
    • /
    • 2005
  • A load flow and short circuit fault simulation of AC electrified railway distribution systems is presented with DIgSILENT PowerFactory software. Load flow of electrified railways distribution system with concerning multi train lines and dynamic characteristics of train load is studied for different time laps. The dynamic characteristics of train load in starting and braking conditions with different starting and stopping times and its moving positions makes the load flow complicated so there is a great need in studying the effects of electrified railways on load flow. Short circuit fault transients is also studied and simulated for both power system or traction distribution system and their effects on the operation of the train sets is investigated.

  • PDF

Design of Cold-flow Test Equipment Considering Dynamic Similarity for DACS Verification (동적상사를 고려한 DACS 검증용 공압 시험장치 설계)

  • Bae, Sangho;Chang, Hongbeen;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.374-377
    • /
    • 2017
  • A cold-flow test equipment was designed to carry out the performance verification of TDACS. For that purpose, the pressure dynamics in the solid rocket motor combustor and the cold-flow test was modeled, and the response time showing the dynamic characteristics of each model was obtained. In this paper, the system response time of the cold-flow test was designed to be equal to that of the motor, making the dynamic response in cold-flow and hot gas condition to be similar.

  • PDF

Active Control of Vibrational Intensity in a Compound Vibratory System (복합진동계의 진동 인텐시티 능동 제어)

  • Kim, Gi-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.109-118
    • /
    • 2002
  • The vibrational intensity and the dynamic response of a compound vibratory system had been controlled actively by means of a feedforward control method. A compound vibratory system consists of a flexible beam and two discrete systems - a vibrating source and a dynamic absorber. By considering the interactive motions between discrete systems and a flexible beam, the equations of motion for a compound vibratory system were derived using a method of variation of parameters. To define the optimal conditions of a controller the cost function, which denotes a time averaged power flow, was evaluated numerically. The possibility of reductions of both of vibrational intensity and dynamic response at a control point located at a distance from a source were fecund to depend on the positions of a source, a control point and a controller. Especially the presence of a dynamic absorber gives the more reduction on the dynamic response but the less on the vibrational intensity than those without a dynamic absorber.