On-line fault detection and diagnosis has an increasing interest in a chemical process industry, especially for a process control and automation. The chemical process needs an intelligent operation-aided workstation which can do such tasks as process monitoring, fault detection, fault diagnosis and action guidance in semiautomatic mode. These tasks can increase the performance of a process operation and give merits in economics, safety and reliability. Aiming these tasks, series of researches have been done in our lab. Main results from these researches are building appropriate knowledge representation models and a diagnosis mechanism for fault detection and diagnosis in a chemical process. The knowledge representation schemes developed in our previous research, the symptom tree model and the fault-consequence digraph, showed the effectiveness and the usefulness in a real-time application, of the process diagnosis, especially in large and complex plants. However in our previous approach, the diagnosis speed is its demerit in spite of its merits of high resolution, mainly due to using two knowledge models complementarily. In our current study, new knowledge representation scheme is developed which integrates the previous two knowledge models, the symptom tree and the fault-consequence digraph, into one. This new model is constructed using a material balance, energy balance, momentum balance and equipment constraints. Controller related constraints are included in this new model, which possesses merits of the two previous models. This new integrated model will be tested and verified by the real-time application in a BTX process or a crude unit process. The reliability and flexibility will be greatly enhanced compared to the previous model in spite of the low diagnosis speed. Nexpert Object for the expert system shell and SUN4 workstation for the hardware platform are used. TCP/IP for a communication protocol and interfacing to a dynamic simulator, SPEEDUP, for a dynamic data generation are being studied.
Recently, various dynamic risk analysis methods have been suggested for estimating the risk index by predicting the possibility of accidents and damage. It is necessary to maintain and support the safety system for responding to accidents by continuously updating the probability of accidents and the results of accidents, which are quantitative standards of ship risk. In this study, when a LNG leakage that may occur in the LN G Fuel Gas Supply System (FGSS) room during LN G bunkering operation, a reliability physical model was prepared by the change in monitoring data as physical parameters to estimate the accident probability. The scenario in which LNG leakage occur were configured with FT (Fault Tree), and the coefficient of the covariate model and Weibull distribution was estimated based on the monitoring data. The possibility of an LNG leakage, which is the top event of FT, was confirmed by changes in time and monitoring data. A method for estimating the LNG leakage based on the reliability physical analysis is proposed, which supports fast decision-making by identifying the potential LNG leakage at the accident.
전통적으로 신뢰도 분석에 사용되는 Fault Tree Analysis의 경우 관련 분야의 전문가가 필요하고 작성자의 판단에 따라 신뢰도 분석 결과가 달라진다. 반면, Reliability Block Diagram의 경우 시스템 구성도나 Process Flow Diagram (PFD), Piping and Instrument Diagram (P&ID)을 기반으로 하기에 작성에 필요한 비용과 시간이 절감되는 장점이 있다. 본 논문에서는 Dynamic Reliability Block Diagram과 이산 사건 시뮬레이션에 널리 사용되는 DEVS 형식론을 이용하는 신뢰도 분석 방법을 제안한다. 또한 시스템 모델링 방법론 중 하나인 System Entity Structure/Model Base의 개념을 도입함으로써 다양한 설계 대안에 대한 신뢰도 분석 모델을 자동으로 생성할 수 있도록 하였다. 그리고 Reliability Block Diagram을 이용한 신뢰도 분석 시 오래 소요되는 계산 시간을 단축시키기 위해 GPU 가속 기술을 신뢰도 분석 시뮬레이션에 접목하였다.
클라우드 시스템이 큰 이슈로 떠오르면서 그 기반이 되는 분산 파일 시스템에 관한 연구가 계속되고 있다. 최근 제안된 분산파일 시스템은 대부분 확장 가능하며 신뢰성이 있는 시스템으로 구성되어 있으며 내고장성(Fault tolerance)과 높은 가용성을 위해 데이터 복제 기법을 사용하며 하둡 분산 파일 시스템에서는 블락의 복제수를 기본3개로 지정한다. 그러나 이 정책은 복제수가 많아지면 많아질수록 가용성은 높아지지만 스토리지 또한 증가한다는 단점이 있다. 본 논문에선 이러한 문제점을 해결하기 위해 최소한의 블락 복제수와 복제된 블락을 효율적으로 배치하여 더 좋은 성능과 부하분산(Load Balancing)하기 위한 기법을 제안한다.
For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.
This paper proposes an expert system with the knowledge learning capability which can enhance the safety and effectiveness of substation operation in the automated substation as well as existing substation by inferring multiple events such as main transformer fault, busbar fault and main transformer work schedule under multiple inference mode and multiple objective mode and by considering totally the switch status and the main transformer operating constraints. Especially inference mode includes the local minimum tree search method and pattern recognition method to enhance the performance of real-time bus reconfiguration strategy. The inference engine of the expert system consists of intuitive inferencing part and logical inferencing part. The intuitive inferencing part offers the control strategy corresponding to the event which is most similar to the real event by searching based on a minimum distance classification method of pattern recognition methods. On the other hand, logical inferencing part makes real-time control strategy using real-time mode(best-first search method) when the intuitive inferencing is failed. Also, it builds up a knowledge base or appends a new knowledge to the knowledge base using pattern learning function. The expert system has main transformer fault, main transformer maintenance work and bus fault processing function. It is implemented as computer language, Visual C++ which has a dynamic programming function for implementing of inference engine and a MFC function for implementing of MMI. Finally, it's accuracy and effectiveness is proved by several event simulation works for a typical substation.
온-라인 재조직 기법은 인터넷 환경과 같은 동적 환경에서 높은 가용성과 고성능을 제공하기 위한 비공유 데이터베이스 클러스터의 필수적인 기능이다. 기존의 온-라인 재조직 기법은 클러스터 안의 프로세싱 노드에 과부하가 생긴 경우, 과부하 노드의 데이터를 인접 노드로 빠르게 이동시킴으로써 부하 분배를 수행한다. 그러나 동시에 두개 이상의 다중 노드에 과부하가 발생된 경우, 부하 분배를 위해 인접 노드로 여러 번의 반복된 데이터 이동이 발생되고, 재조직 수행동안 시스템의 응답 속도가 늦어지는 문제점이 있다. 본 논문에서는 다중 노드에 발생한 과부하 문제를 빠르고 효율적으로 해결하는 향상된 $B^{+}$트리 색인의 온-라인 재조직 기법을 제안한다. 제안된 기법은 확장 가능한 데이터베이스 클러스터 환경 하에 온-라인 확장을 통해 새롭게 추가된 노드들에 데이터를 이동시킴으로써 데이터 이동의 회수를 줄이면서 빠른 시간 안에 온-라인 재조직을 수행하도록 한다. 또한 제안된 기법에서는 $B^{+}$-트리 색인 대신 캐시를 고려한 CS$B^{+}$-트리 색인을 이용하여 검색과 갱신 연산을 보다 빠르게 처리하도록 한다. 제안된 온-라인 재조직 기법은 확장 가능한 고가용 데이터베이스 클러스터 시스템으로 개발된 최대 결함허용 보장 데이터베이스 클러스터(Ultra Fault-Tolerant Database Cluster) 환경에서 성능 평가를 통해 기존 기법에 비해 빠르고 효율적임을 보인다.
전송-수신 쌍들을 연결하는 많은 수의 경로들로 이루어진 멀티캐스트 트리에서 네트워크 구성요소의 실패는 멀티캐스트 트리의 일부를 손상시킬 수 있다. 그러나 하나의 구성요소의 실패를 복구하기 위해 전체 멀티캐스트 트리를 다시 만드는 것은, 실패의 영향을 받지 않은 경로를 사용하는 그룹 멤버들까지도 서비스의 중단을 겪어야 하기 때문에 바람직하지 않다. 본 논문은 QoS 멀티캐스트 트리에서 재구성해야 할 영역을 줄이면서 재구성의 성공 가능성을 최대화하는 계획된 재구성(Pre-Planned Reconfiguration: PPR) 정책을 제안한다. PPR 방식은 멀티캐스트 트리의 전송-수신 쌍을 연결하는 각 경로에 재구성 경로를 미리 만들고, 이들 경로에 필요한 자원을 미리 예약해 둔다. 이를 위해 우리는 기존 멀티캐스트 트리의 변화를 최소화하며 손상되지 않은 부분들의 서비스를 최대한 유지하는 재구성 경로의 라우팅 방법을 고안하였으며, 효율적 자원 공유 방법을 사용하여 재구성 경로들을 위해 예약된(실패가 일어나지 않을 경우 사용되지 않는) 자원의 양을 줄인다. PPR 방식은 실패 복구를 위해 여러 멀티캐스트 세션들이 동시에 엄청난 경쟁을 하는 것을 막을 수 있다. 시물레이션을 통해 최단경로 라우팅을 사용하는 전송자 중심 멀티캐스트 트리와 공유 멀티 캐스트 트리에서 각각 성능을 평가한 결과 PPR 방식은 적당한 오버헤드내에서 모든 그룹 멤버들에게 성공적인 재구성을 제공한다. 또한 PPR 방식은 그룹 멤버쉽이 동적으로 변화할 때에도 잘 적응한다.
A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.
A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since it is highly memory consuming. In order to solve a large reliability problem within limited computational resources, many attempts have been made, such as static and dynamic variable ordering schemes, to minimize BDD size. Additional effort was the development of a ZBDD (Zero-suppressed BDD) algorithm to calculate an approximate TEP. The present method is the first successful application of a BDD truncation. The new method is an efficient method to maintain a small BDD size by a BDD truncation during a BDD calculation. The benchmark tests demonstrate the efficiency of the developed method. The TEP rapidly converges to an exact value according to a lowered truncation limit.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.