• 제목/요약/키워드: Dynamic fatigue test

검색결과 220건 처리시간 0.027초

함정탑재장비용 대용량 마운트의 성능시험평가 (Experimental Evaluation of the Performance of Large-Capacity Mounts for Naval Shipboard Equipments)

  • 문석준;김흥섭;박진우;박진호;오광석;정종안
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.275-281
    • /
    • 2015
  • Mounts for shipboard equipment in naval ships play an important role for vibration and shock suppression. New large-capacity resilient mounts, SDR-D30 and SDR-D45, have been developed. This paper involves performance tests for the mount which have maximum load of 30 kN and 45 kN, respectively. The performance tests have been carried out for several mounts based on military standards, such as MIL-M-19863D(SH), MIL-M-21693C(SH), MIL-M-17508F(SH), and MIL-S-901D(NAVY). The test items consist of deflection at upper rate load test, dynamic stiffness, uniformity, static load-deflection(axial, transverse and longitudinal), drift test, fatigue test, and shock test. From these performance tests, it is confirmed that the two mounts have good performances based on military standards.

고속 회전형 공구헤드의 설계 및 성능시험 (Design and Performance Test of High-speed Swivel Tool Head)

  • 김인환;구자함;허남수
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.57-63
    • /
    • 2014
  • At present, a high-speed swivel tool head of a small size is required to improve the productivity of CNC automatic lathes. Hence, there is growing interest in shorter machining times with higher cutting speeds. However, an increase in the rotation speed of a swivel tool head also has adverse effects, such as vibration and noise caused by the swivel tool head system. In this work, the fatigue life and contact pressure of a swivel tool head bearing system driven by gears were calculated. Based on the calculated results, a prototype swivel tool head was manufactured and its static and dynamic characteristics, i.e., the vibration, noise and precision, were measured using a reliability testing device which allows the application of cutting force to the end of the swivel tool head.

이종재료(알루미늄합금-강판)의 저항 점용접에 관한 연구 (A Study on Resistance Spot Welding of Dissimilar Sheet Metals(Aluminum Alloy - Steel Sheets))

  • 손병천;우승엽;이재범;최용범;장희석
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.42-62
    • /
    • 1997
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. Recently, automobile industries are trying to replace partly steel sheets with aluminum alloy sheets. Among currently produced aluminum alloys, Al alloy sheets of Al-Mg-Si(6000 series) are being tested. Especially, 6000 series are the most probable substitute in view of strength and weldability. In this paper, an attempt was made to apply resistance spot welding to joining of dissimilar sheet metals (KS6383+SCPZn or KS6383+SHCP). An effort was made to balance heating rate in the Al alloy with that in the steel sheets by increasing electrode tip diameter. Although resistance spot welding of Al alloy sheet and sheet metals does not produce desirable nugget, it proved to have reasonable strength if optimal weld condition is found by tensile-shear strength and fatigue life test. Since spot weld joints in automobile are always experiencing repeated load, spot welding methodology proposed in this paper is found to be not suitable to automobile body manufacturing.

  • PDF

골판지를 이용한 완충 포장재의 물리적 특성에 관한 연구 (The Analysis of Cushioning Properties of Corrugated Cushion)

  • 최승진;신중민
    • 한국포장학회지
    • /
    • 제12권1호
    • /
    • pp.35-40
    • /
    • 2006
  • Cushioning systems, which are cushion material and its designed configuration, are important to protect fragile items since they act as buffers between the impact force and the fragile product. As cushioning materials, several plastic foams are commonly used in industry. However, the utilization of the plastic material has been causing a solid waste problem and pollution. Thus, as an alternative cushion material to the plastic foams, a corrugated cushion, which is considered environmentally friendly and cheap material, was put into drop tests and its impact shock attenuation was investigated. Flat and free drop data were recorded and compared to the dynamic shock of EPS cushion. In addition, the mathematical model of the shock attenuation of the corrugated cushion was developed. The result showed that the corrugated cushion gave an excellent protection for items that were subjected to the limited number of drops. There was no significant difference of the shock absorbing ability between the EPS and corrugated cushions. Energy density model of cushioning material successfully explained the mechanical behavior and fatigue of the corrugated cushions.

  • PDF

Interaction of Mechanics and Electrochemistry for Magnesium Alloys

  • Han, En-Hou;Wang, JianQiu;Ke, Wei
    • Corrosion Science and Technology
    • /
    • 제7권5호
    • /
    • pp.243-251
    • /
    • 2008
  • Magnesium alloys become popular research topic in last decade due to its light weight and relatively high strength-to-weight ratio in the energy aspiration age. Almost all structure materials are supposed to suspend stress. Magnesium is quite sensitive to corrosive environment, and also sensitive to environmental assisted cracking. However, so far we have the limited knowledge about the environmental sensitive cracking of magnesium alloys. The corrosion fatigue (CF) test was conducted. Many factors' effects, like grain size, texture, heat treatment, loading frequency, stress ratio, strain rate, chemical composition of environment, pH value, relative humidity were investigated. The results showed that all these factors had obvious influence on the crack initiation and propagation. Especially the dependence of CF life on pH value and frequency is quite different to the other traditional structural metallic materials. In order to interpret the results, the electrochemistry tests by polarization dynamic curve and electrochemical impedance spectroscopy were conducted with and without stress. The corrosion of magnesium alloys was also studied by in-situ observation in environmental scanning electron microscopy (ESEM). The corrosion rate changed with the wetting time during the initial corrosion process. The pre-charging of hydrogen caused crack initiated at $\beta$ phase, and with the increase of wetting time the crack propagated, implying that hydrogen produced by corrosion reaction participated in the process.

산업용 단선 궤도 차량의 주행 동특성에 관한 연구 (A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle)

  • 이수호;정일호;이형;박중경;박태원
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.

Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model

  • Zhang, Jing;Au, Francis T.K.;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.157-173
    • /
    • 2020
  • In the finite element modelling of long-span cable-stayed bridges, there are a lot of uncertainties brought about by the complex structural configuration, material behaviour, boundary conditions, structural connections, etc. In order to reduce the discrepancies between the theoretical finite element model and the actual static and dynamic behaviour, updating is indispensable after establishment of the finite element model to provide a reliable baseline version for further analysis. Traditional sensitivity-based updating methods cannot support updating based on static and dynamic measurement data at the same time. The finite element model is required in every optimization iteration which limits the efficiency greatly. A convenient but accurate Kriging surrogate model for updating of the finite element model of cable-stayed bridge is proposed. First, a simple cable-stayed bridge is used to verify the method and the updating results of Kriging model are compared with those using the response surface model. Results show that Kriging model has higher accuracy than the response surface model. Then the method is utilized to update the model of a long-span cable-stayed bridge in Hong Kong. The natural frequencies are extracted using various methods from the ambient data collected by the Wind and Structural Health Monitoring System installed on the bridge. The maximum deflection records at two specific locations in the load test form the updating objective function. Finally, the fatigue lives of the structure at two cross sections are calculated with the finite element models before and after updating considering the mean stress effect. Results are compared with those calculated from the strain gauge data for verification.

투명 유연 AMOLED TV 구현을 위한 증착형 SnO2/Ag-Pd-Cu(APC)/SnO2 다층 투명 캐소드 박막 연구

  • 김두희;김한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.181.2-181.2
    • /
    • 2016
  • OLED 소자는 발광 방향에 따라 Bottom Emission 방식과 Top Emission 방식으로 나뉜다. 이 중 대면적 OLED TV 적용에 개구율이 더 높은 Top Emission방식을 선호하는 추세이다. 높은 개구율을 가진 Top Emission OLED소자를 위해서는 투명하고 전도성이 높은 캐소드가 중요하다. 본 연구에서는 Themal Evaporation 시스템을 이용하여 증착한 $SnO_2/Ag-Pd-Cu(APC)/SnO_2$ hybrid 전극의 특성을 연구하고 Oxide/Metal/Oxide(OMO) hybrid 박막의 bending mechanism을 제시하였다. base pressure는 $1{\times}10^{-6}Torr$로 고정하고 $SnO_2$ 박막은 0.34A / 0.32V, APC 박막은 0.46A / 0.40V의 power로 성막하였다. APC와 $SnO_2$의 두께를 변수로 OMO 전극을 제작하였고 그 전기적, 광학적 특성을 Hall measurement, UV/Visible spectroscopy을 이용하여 분석하고 Figure of merit 값을 바탕으로 최적 두께를 설정하였다. UPS(Ultraviolet Photoelectron Spectroscopy) 분석으로 $SnO_2/APC/SnO_2$ 전극의 일함수을 통해 투명 cathode로 쓰였을 때 $SnO_2$ 층이 buffer layer역할을 함을 확인하였다. XPS(X-ray photoelectron spectroscopy)를 이용하여 정성분석과 정량분석을 하였고 OMO hybrid 전극의 bending mechanism 연구를 위해 다양한 bending test (Inner/Outer dynamic fatigue test, twisting test, rolling test)를 진행하였다. 물리적 힘이 가해진 OMO hybrid 전극의 표면과 구조는 FE-SEM(Field Emission Scanning Electron Microscope) 분석을 통해서 확인할 수 있었다.

  • PDF

시니어 낙상예방을 위한 기능성 서포터 착용에 따른 근기능 및 균형감각과 피로회복에 미치는 영향 연구 (Impact of Wearing Functional Supporters that Prevent Seniors from Falling on Muscle Function, Sense of Balance, and Overcoming Fatigue)

  • 엄성흠;장선우;박문환;이승재
    • 한국의류산업학회지
    • /
    • 제24권1호
    • /
    • pp.156-163
    • /
    • 2022
  • Loss of leg muscle and muscle weakness, which are caused by aging, affect muscle function and sense of balance. As a way of preventing seniors from falling, we developed the idea of wearing functional supporters based on graduated compression technique and in the form of a taping supporter. Their impact on power, sense of balance, overcoming fatigue, and subjective wearing sensation was investigated. The following results were obtained. After wearing functional compression supporters, body temperature increased from 24.5 ± 0.5℃ to 26.3 ± 0.6℃. Calf size, which assesses the level of edema, decreased from 26.1 ± 1.8cm to 25.7 ± 1.8cm. The result of dynamic balance test, which helps estimate the fall prevention effect, increased from 6.4 ± 0.9sec to 7.1 ± 0.6sec. Lactate level, which indicates the level of fatigue, decreased from 8.1 ± 0.6mmol/L to 7.3 ± 0.8mmol/L. Standing long jump record, which assesses power, increased from 110.1 ± 3.1cm to 112.0 ± 2.8cm. Standing on one leg with eyes closed, which assesses sense of balance, increased from 4.2 ± 1.1sec to 6.5 ± 0.8sec. Ankle angle, which assesses joint stability, increased from 75.3 ± 4.0° to 80.1 ± 1.7°. In metabolism and physical performance testing, which assesses keep, the score increased from 26.3 ± 1.7 to 28.8 ± 1.2. Muscle supporting score, which assesses joint stability, increased from 7.3 ± 0.6 to 7.8 ± 0.4. In the category of body type, which assesses wearing sensation and body shaping function, the score increased from 5.7 ± 1.4 to 6.4 ± 1.2

Stretchable OLED 구현을 위한 반투명 스트레처블 Ag 전극 연구

  • 고은혜;김효중;김기현;김태웅;김한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.239.1-239.1
    • /
    • 2016
  • 본 연구에서는 stretchable OLED를 구현하기 위해 배선 전극으로 사용 가능한 반투명 스트레처블 Ag 전극의 특성을 연구하였다. 스트레처블 Ag 전극은 Polydimethylsiloxane(PDMS) 기판을 사용하였으며, UV 처리를 통해 wavy패턴을 가지는 PDMS 기판을 제작하여 신축성을 향상시키고, 이를 일반 PDMS 기판과 비교하였다. 만들어진 두 종류의 PDMS 기판 위에 연성과 전성의 특성을 지닌 Ag를 sputtering방법을 이용하여 두께 변수로 제작하였고 전극의 전기적, 광학적, 표면적, 기계적 특성에 대한 평가를 진행하였다. 최적화된 반투명 스트레처블 Ag 전극은 가해진 strain에 따라 투과도가 변화하여 30%의 strain을 가한 상태에서 30%의 광투과율을 보였으며, 일반 PDMS기판을 적용한 전극보다 더 낮은 저항변화율을 나타냄을 알 수 있었다. 또한 다양한 신축성 테스트(Strain test, Hysteresis test, Dynamic fatigue test)와 Field Emission Scanning Electron Microscope(FE-SEM)분석법을 통해 wavy패턴이 있는 PDMS 기판을 적용한 Ag 전극이 일반 PDMS 기판을 적용한 Ag 전극보다 더 높은 신축성을 가지는 것을 확인하였다. 이를 통해 반투명 스트레처블 Ag 전극이 차세대 stretchable OLED용 배선전극으로 적용될 가능성을 확인하였다.

  • PDF