• Title/Summary/Keyword: Dynamic energy

Search Result 3,572, Processing Time 0.027 seconds

Testing the pollution haven hypothesis on the pathway of sustainable development: Accounting the role of nuclear energy consumption

  • Danish, Danish;Ud-Din Khan, Salah;Ahmad, Ashfaq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2746-2752
    • /
    • 2021
  • The environmental effects of China's nuclear energy consumption in a dynamic framework of the pollution haven hypothesis are examined. This study uses a dynamic autoregressive distributed lag simulation approach. Empirical evidence confirms that the pollution haven hypothesis does not exist for China; i.e., foreign direct investment plays a promising role in influencing environmental outcomes. Furthermore, empirical results concluded positive contribution of nuclear energy in pollution mitigation. From the results it is expected that encouraging foreign investment to increase generation of nuclear energy would benefit environmental quality by reducing CO2 emissions.

A Measurement Study of a Dynamic Insulator Thermal Performance (동적 단열재의 열성능 측정에 관한 연구)

  • Ko, Seon-Mi;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.361-368
    • /
    • 2010
  • Due to the insulation and the air-tightness requirement in modern buildings have resulted NBS(New Building Syndrome) and SBS(Sick Building Syndrome) of IAQ problems. Therefore, energy efficient way of solving such IAQ issues are of major concern in these days and building industries. This paper introduces a method to improve thermal performance with a DI(Dynamic Insulation) concept. The characteristic of the dynamic insulation is that the lower U-value as the higher air velocity through the DI in a micro level. A thermal performance monitoring study has been conducted to show the energy impact of porous DI over the static insulation material. The results show that up to 45% could be improved in the case with DI compared to the conventional insulation.

A Study on the Application of Ecological Structural Dynamic Modelling (생태 모델링기법으로서 동적구조모형의 고찰)

  • Kim, Jwa-Kwan
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.4
    • /
    • pp.213-222
    • /
    • 2004
  • Exergy is defined as the amount of work (entropy-free energy) a system can perform when it is brought into thermodynamic equilibrium with its environment. Exergy measures the distance from the inorganic soup in energy terms. Therefore, exergy can be considered as fuel for any system that converts energy and matter in a metabolic process. The aim of this study is to introduce structural dynamic modelling which is based on maximum exergy principle. Especially, almost ecological models couldn't explain algal succession until now. New model (structural dynamic model) is anticipated to predict or explain the succession theory. If the new concept using maximum exergy principle is used, algal succession can be explained in many actual cases. Therefore, It is estimated that structural dynamic model using maximum exergy principle might be a excellent tool to understand succession of nature from now on.

Dynamic plastic response of a hinged-free beam subjected to impact at an arbitrary location along its span

  • Zhang, Y.;Yang, J.L.;Hua, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.611-624
    • /
    • 2002
  • In this paper, a complete solution is presented for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is simply supported or hinged and the other end free, subjected to a transverse strike by a travelling mass at an arbitrary location along its span. The governing differential equations are expressed in non-dimensional forms and solved numerically to obtain the instantaneous deflection of the beam and the plastic dissipated energy in the beam. The dynamic behavior for a hinged-free beam is more complicated than that of a free-free beam. It transpires that the mass ratio and impact position have significant influence on the final deformation. In the aspect of energy dissipation, unlike simply supported or clamped beams for which the plastic deformation consumes almost the total input energy, a considerable portion of the input energy would be transferred as rigid-body motion of hinged-free beam, and the energy dissipated in its plastic deformation is greatly reduced.

Analysis on Application of Flywheel Energy Storage System for offshore plants with Dynamic Positioning System

  • Jeong, Hyun-Woo;Kim, Yoon-Sik;Kim, Chul-Ho;Choi, Sung-Hwan;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.935-941
    • /
    • 2012
  • This paper describes a study of conventional electrical rig and simulated application of Flywheel Energy Storage system on the power system of the offshore plants with dynamic positioning system with the following aims: improve fuel consumption on engines, prevent blackout and mitigate voltage sags due to pulsed load and fault. Fuel consumption has been analyzed for the generators of the typical drilling rigs compared with the power plant with Flywheel Storage Unit which has an important aid in avoiding power interruption during DP (Dynamic Positioning) operation. The FES (Fly wheel Energy storage System) releases energy very quickly and efficiently to ensure continuity of the power supply to essential consumers such as auxiliary machinery and thrusters upon main power failure. It will run until the standby diesel generator can start and supply the electric power to the facilities to keep the vessel in correct position under DP operation. The proposed backup method to utilize the quick and large energy storage Flywheel system can be optimized in any power system design on offshore plant.

Dynamic Causal Relationships between Energy Consumption and Economic Growth (에너지소비와 경제성장의 동태적 인과관계)

  • Mo, Soowon;Kim, Changbeom
    • Environmental and Resource Economics Review
    • /
    • v.12 no.2
    • /
    • pp.327-346
    • /
    • 2003
  • Unlike previous studies on the causal relationship between energy consumption and economic growth, this paper analyses the dynamic causal relationship between these variables using the dynamic vector using Johansen's multiple cointegration procedure, dynamic vector error-correction model and impulse response function. The empirical results show that while the energy consumption to a shock in income responds positively, the income responds positively to the shocks in energy consumption in the first place and then the responses become negative. We also find that the impact of energy consumption shock on the income is short-lived and causes higher inflationary pressure.

  • PDF

Energy Efficient Dynamic S-MAC Protocol for Sensor Networks (센서 네트워크에서 에너지 효율적인 동적 S-MAC 프로토콜)

  • Yoo, Dae-Suk;Choi, Seung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.502-509
    • /
    • 2008
  • Wireless sensor networks consist of sensor nodes which are expected to be battery-powered and hard to replace or recharge. Thus, reducing the energy consumption of sensor nodes is an important design consideration in wireless sensor networks. For the implementation of energy-efficient MAC protocol, Sensor-MAC based on IEEE 802.11 protocol. In this paper, which has energy efficient scheduling, was proposed. In this paper, we propose Dynamic S-MAC that is dynamically operated by network-traffic states. Dynamic S-MAC protocol improves energy consumption of S-MAC due to change the frame length according to network-traffic states. Using NS-2 Simulation, we compare the performance of Dynamic S-MAC with S-MAC protocol.

Comparative Study Between a Dynamic Food-Chain Model(DYNACON) and an Equilibrium Model (NRC Model)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Park, Young-Gil;Han, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.407-412
    • /
    • 1997
  • The predictive results between a dynamic food-chain model (DYNACON) and an equilibrium model (NRC model) were compared to show the physical validity of DYNACON. Although the mathematical formulations and transport processes of radionuclides in the environment are different between two models, the comparative study shows good agreement for deposition events that occur during the growing season of plants.

  • PDF

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.

Energy-aware Instruction Cache Design using Partitioning (분할 기법을 이용한 저전력 명령어 캐쉬 설계)

  • Kim, Jong-Myon;Jung, Jae-Wook;Kim, Cheol-Hong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.241-251
    • /
    • 2007
  • Energy consumption in the instruction cacheaccounts for a significant portion of the total processor energy consumption. Therefore, reducing energy consumption in the instruction cache is important in designing embedded processors. This paper proposes a method for reducing dynamic energy consumption in the instruction cache by partitioning it to smaller (less energy-consuming) sub-caches. When a request comes into the proposed cache, only one sub-cache is accessed by utilizing the locality of applications. By contrast, the other sub-caches are not accessed, leading todynamic energy reduction. In addition, the proposed cache reduces dynamic energy consumption by eliminating the energy consumed in tag matching. We evaluated the energy efficiency by running cycle accurate simulator, SimpleScalar. with power parameters obtained from CACTI. Simulation results show that the proposed cache reduces dynamic energy consumption by $37%{\sim}60%$ compared to the traditional direct-mapped instruction cache.