• Title/Summary/Keyword: Dynamic elastic modulus

Search Result 272, Processing Time 0.032 seconds

Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading (지오그리드로 보강한 고속철도 노반의 거동 특성)

  • 신은철;김두환
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Depth-dependent evaluation of residual material properties of fire-damaged concrete

  • Kim, Gyu-Jin;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2017
  • In this study, fire-damaged concrete was investigated by a nonlinear resonance vibration (NRV) technique, in order to evaluate its residual material properties. For the experiments, five cubic concrete specimens were prepared and four of them were damaged at different temperatures using a furnace. With a thermal insulator wrapped at the sides of specimen, thermal gradation was applied to the samples. According to the peak temperatures and depths of the samples, nonlinearity parameters were calculated with the NRV technique before the tendency of the parameters was evaluated. In addition, compressive strength and dynamic elastic modulus were measured for each sample and a comparison with the nonlinearity parameter was carried out. Through the experimental results, the possibility of the NRV technique as a method for evaluating residual material properties was evaluated.

Study on the Structural and Thermal Properties of Modified Elastic Epoxy with Brittleness (취성 개량형 탄성에폭시의 구조 및 열적특성에 관한 연구)

  • Lee, K.Y.;Lee, K.W.;Min, J.Y.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.128-130
    • /
    • 2003
  • As toughness-investigation to improve brittleness of existing epoxy resin, elastic-factor of elastic epoxy using TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis) and FESEM (Field Emission Scanning Electron Microsope) for structure-images analysis were investigated. A range of measurement temperature of the TMA, DMTA was changed from -20[$^{\circ}C$] to 200[$^{\circ}C$]. When modifier was ratio of 0[phr], 20[phr], 35[phr], glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices. Also, it was investigated thermal expansion coefficient ($\alpha$), modulus and loss factor through DMTA. In addition, it was analyzed structure through FSSEM and made sure elastic-factor of elastic epoxy visually. As thermal analysis results, 20[phr] was superior than 30[phr] thermally and mechanically. Specially, thermal expansion coefficient, modulus, damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

  • PDF

Comparison of Elastic Modulus Evaluated by Plate Load Test and Soil Stiffness Gauge Considering Strain and Ground Stiffness (변형률 및 지반강성을 고려한 평판재하시험과 흙강성측정기의 탄성계수 비교)

  • Kim, Kyu-Sun;Shin, Donghyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.31-40
    • /
    • 2022
  • This study compares elastic moduli calculated using two stiffness testing methods with different strain ranges to evaluate the stress-settlement characteristics of foundation support layers. Elastic moduli were calculated by the soil stiffness gauge (SSG) in the micro-strain range and the plate load test (PLT) in the medium strain range. To apply the elastic moduli obtained by the two testing methods with different strain ranges to the design and construction of foundation soils, the correlation between each measurement value should be identified in advance. As a result of the comparative analysis of the elastic moduli calculated using the two methods in weathered soil and rock, which are representative support layers in Korea, the calculated elastic moduli differed depending on the types of soil and stress conditions. For various soil types, the static elastic modulus obtained by the PLT was reduced by 56% because of the difference in the strain level of the test compared with the dynamic elastic modulus obtained by the SSG. Therefore, the results show that it is necessary to apply corrections to the stress distribution, stress level, and dynamic effect according to the ground stiffness to effectively use the SSG instead of the PLT.

A Comparative study on Dynamic & Static elastic modulus of cement mortar specimens (시멘트 모르타르 재료의 동탄성계수와 정탄성계수 비교 연구)

  • O, Seon-Hwan;Kim, Hyoung-Soo;Jang, Bo-An;Suh, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • This study was conducted to examine the differences between dynamic and static elastic constants by use of some laboratory tests of cement mortar specimens which have different water/cement mixing ratios. Specific gravity measurement, ultrasonic velocity estimating and uniaxial compression test were adopted to acquire the dynamic and static elastic constants. Digital data acquisition and processing enhanced the accuracy of estimating the velocities of specimens drastically, Also, the method using the gradient of propagation delay time in according to increment of specimen length more enhanced the accuracy than the method using the only one specimen length over total propagation time. The correlation between density and the P and S wave velocity of specimens shows reliable positive relation and the correlation between density and the strength of uniaxial compression has the similar relationship. The dynamic Young's modulus $(E_D)$ is alway greater than the static Young's modulus $(E_S)$ and there is increasing tendency of the ratio $(E_D/E_S)$ according to the increase of density or strength of the specimens. On the other hand, there is no typical relationship between dynamic Poisson's ratio $({\nu}_D)$ and static Poisson's ratio $({\nu}_S)$ and just the ratio of ${\nu}_D/{\nu}_S$ ranges front 69 to 122 %.

  • PDF

Correction Factors for Modulus Calculation Equation used in Light Weight Deflectometer Considering Track Foundation (궤도노반 강성차이를 고려한 동평판재하시험(LWDT) 동탄성계수 산정공식 수정계수)

  • Choi, Chan Yong;Lee, Jin Wook;Lim, Yuijn;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • LWDT was developed for use as an alternative technique to measure the stiffness of trackbed soils. In this study, numerical and theoretical analyses of LWDT's acting mechanism were performed. The effectiveness of the adapted elastic formula used for calculation of the dynamic modulus, Evd, was investigated theoretically and also numerically by running ABAQUS analysis. The minimum thickness of the upper layer is proposed based on the analysis. Correction factors for the formula of elastic modulus are also proposed in this study. In the future, following field test results and laboratory mechanical tests such as the resonant column test, a guideline for the use of LWDT as a standard test protocol in track construction sites, as a measuring tool for the degree of compaction and/or stiffness and dynamic modulus, will be proposed based on this analysis.

An Analysis of Railroad Trackbed Behavior Using Resilient Modulus Prediction Models (회복탄성계수 예측모델을 이용한 철도노반의 거동 분석)

  • Park, Chul-Soo;Jung, Jae-Woo;Oh, Sang-Hoon;Kim, Eun-Jung;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1712-1723
    • /
    • 2008
  • In the trackbed design using an elastic multi-layer model, the stress-dependent resilient modulus is the key input parameter, which reflects substructure performance under repeated traffic loading. The prediction models of resilient modulus of crushed stone and weathered granite soil were developed from nonlinear dynamic stiffness, which can be combined by in-situ and laboratory seismic measurements. The models accommodate the variation with the deviatoric and/or bulk stresses. To investigate the performance of the prediction models proposed, the elastic response of the test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement caused by the passages of freight and passenger trains. The material types of the test sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 1mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Dynamic Response of Jointed Concrete Pavement in Test Road Due to Temperature Gradient (온도구배에 의한 시험도로 줄눈콘크리트 포장의 동적응답)

  • Yoo Tae-Seok;Jeong Jin-Hoon;Han Seung-Hwan;Sim Jong-Sung
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.25-32
    • /
    • 2006
  • Behavior of concrete pavement due to temperature gradient was investigated for 48 hours at test road using Falling Weight Deflectometer. The deflections at slab center changed similarly to those of ambient temperature and temperature gradients in the slab. And rapid variations in the deflections were observed between 8 to 12 in the morning. However, dynamic modulus of subgrade reaction and joint deflections showed reverse trends to the ambient temperature and temperature gradients. The dynamic modulus of subgrade reaction was significantly affected by temperature gradient when its value got higher. Backcalculated elastic moduli were obtained using AREA method and Method of Equivalent Thickness. The trends of the backcalculated elastic modulus were similar to those of dynamic modulus of subgrade reaction. Measured load transfer efficiencies showed maximum peak in the morning due to dowel locking. However, additional effort is necessary to verify the result.

  • PDF

Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests (공진주 시험을 이용한 섬유보강토의 동적변형특성)

  • Chang, Pyoung-Wuck;Heo, Joon;Park, Young-Kon;Cha, Kyung-Seob;Woo, Chull-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF