• Title/Summary/Keyword: Dynamic economic dispatch

Search Result 26, Processing Time 0.021 seconds

Development of Optimal Operation Algorithm about CES Power Plant (CES 발전소의 최적운용 알고리즘 개발)

  • Kim, Yong-Ha;Park, Hwa-Yong;Kim, Eui-Gyeong;Woo, Sung-Min;Lee, Won-Ku
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.61-70
    • /
    • 2012
  • Recently due to the increasing of the importance on the green energy is getting higher by implementing EERS(Energy Efficiency Resource Standards) and NA(Negotiated Agreement) such as lacks of natural resources and The United Nations Framework Convention on Climate Change. And the most practical solution is CHP(Combined Heat and Power) which performs the best energy efficiency. This paper developed optimal operation mechanism of CES(Community Energy System) for enhancement of energy efficiency using CHP(Combined Heat and Power), PLB(Peak Load Boiler) and ACC(ACCumulator) capacities. This method optimally operated these capacities calculated the maximum profits by Dynamic Programing. Through the case studies, it is verified that the proposed algorithm of can evaluate availability.

Development of Pareto-Optimal Technique for Generation Planning According to Environmental Characteristics in term (환경특성을 반영한 급전계획의 파레토 최적화기법 개발)

  • Lee, Buhm;Kim, Yong-ha;Choi, Sang-kyu
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • This paper presents a new methodology to get pareto-optimal solution for generation planning. First, we apply dynamic programming, and we can get an optimal economic dispatch considering total quantity of contamination for the specified term. Second, we developed a method which can get pareto-optimal solution. This solution is consisted of a set of optimal generation planning. As a result, decision maker can get pareto-optimal solutions, and can choose a solution. We applied this method to the test system, and showed the usefulness.

Load shedding case study of the refinery plant power system considering dynamic characteristic (정유공장 전력계통 동특성을 고려한 부하차단 적용 사례연구)

  • Lee, Kang-Wan;Lim, Joo-Il;Kim, Hyung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.61-65
    • /
    • 2000
  • This paper presents the load shedding case studies and recommendations of load shedding scheme For improving the reliability to suit the requirements of LG-Caltex refinery plant power sγstem. It is recommended for LG-Caltex to decrease the total generation for the economic dispatch. When the LG-Caltex refinery is isolated from KEPCO utility system, the proper load shedding scheme should be implemented since total generation in LG-Caltex refinery plant is less than the load demand. According to the studies carried out the logic-based load shedding is recommended as the main protection scheme, with the combination of the under-frequency relay load shedding.

  • PDF

Optimal Coordination and Penetration of Distributed Generation with Shunt FACTS Using GA/Fuzzy Rules

  • Mahdad, Belkacem;Srairi, Kamel;Bouktir, Tarek
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • In recent years, integration of new distributed generation (DG) technology in distribution networks has become one of the major management concerns for professional engineers. This paper presents a dynamic methodology of optimal allocation and sizing of DG units for a given practical distribution network, so that the cost of active power can be minimized. The approach proposed is based on a combined Genetic/Fuzzy Rules. The genetic algorithm generates and optimizes combinations of distributed power generation for integration into the network in order to minimize power losses, and in second step simple fuzzy rules designs based upon practical expertise rules to control the reactive power of a multi dynamic shunt FACTS Compensator (SVC, STATCOM) in order to improve the system loadability. This proposed approach is implemented with the Matlab program and is applied to small case studies, IEEE 25-Bus and IEEE 30-Bus. The results obtained confirm the effectiveness in sizing and integration of an assigned number of DG units.

Development of Economic based Optimal Operation Program for Microgrid (경제성 기반의 마이크로그리드 최적운영 프로그램 개발)

  • Lee, Hak-Ju;Cha, Woo-Ku;Song, Il-Kun;Yoon, Yong-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.106-114
    • /
    • 2009
  • This paper addresses unit commitment for microgrid optimization including renewable energy sources, working under deregulated power market. As microgrid supplies both heat and electricity for consumer, operational optimization must be done to meet their demand economically. So renewable energy sources are considered to be negative load, and batteries are used as the load flattening device to raise possibly operational function. In the state of solution, the program is developed to solve out the maximum profit of microgrid using dynamic programming method. Finally, its validity is verified through case study in isolation mode and interconnected mode. The S/W will be used to operate microgrid economically after the market of microgrid is formed.

Multi-Stage Generation Allocation Game Considering Ramp-rate Constraints (경쟁적 전력시장에서 발전기 증감발률을 고려한 다중시간 발전량 배분 게임)

  • Park, Yong-Gi;Park, Jong-Bae;Roh, Jae-Hyung;Kim, Hyeong-Jung;Shin, Jung-Rin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • This paper studies a novel method to find the profit-maximizing Nash Equilibriums in allocating generation quantities with consideration of ramp-rates under competitive market environment. Each GenCo in a market participates in a game to maximize its profit through competitions and play a game with bidding strategies. In order to find the Nash equilibriums it is necessary to search the feasible combinations of GenCos' strategies which satisfy every participant's profit and no one wants various constraints. During the procedure to find Nash equilibriums, the payoff matrix can be simplified as eliminating the dominated strategies. in each time interval. Because of the ramp-rate, generator's physically or technically limits to increase or decrease outputs in its range, it can restrict the number of bidding strategies of each generator at the next stage. So in this paper, we found the Nash Equilibriums for multi-stage generation allocation game considering the ramp-rate limits of generators. In the case studies, we analyzed the generation allocation game for a 12-hour multi-stage and compared it with the results of dynamic economic dispatch. Both of the two cases were considered generator's ramp-rate effects.