• Title/Summary/Keyword: Dynamic contraction

Search Result 105, Processing Time 0.028 seconds

Reproducibility of Electromyography Signal Amplitude during Repetitive Dynamic Contraction

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.689-694
    • /
    • 2011
  • Objective: The aim of this study is to evaluate the fluctuation of signal amplitude during repetitive dynamic contraction based on surface electromyography(EMG). Background: The most previous studies were considered isometric muscle contraction and they were difference to smoothing window length by moving average filter. In practical, the human movement is dynamic state. Dynamic EMG signal which indicated as the nonstationary pattern should be analyzed differently compared with the static EMG signal. Method: Ten male subjects participated in this experiment, and EMG signal was recorded by biceps brachii, anterior/posterior deltoid, and upper/lower trapezius muscles. The subject was performed to repetitive right horizontal lifting task during ten cycles. This study was considered three independent variables(muscle, amplitude processing technique, and smoothing window length) as the within-subject experimental design. This study was estimated muscular activation by means of the linear envelope technique(LE). The dependent variable was set coefficient of variation(CV) of LE for each cycle. Results: The ANOVA results showed that the main and interaction effects between the amplitude processing technique and smoothing window length were significant difference. The CV value of peak LE was higher than mean LE. According to increase the smoothing window length, this study shows that the CV trend of peak LE was decreased. However, the CV of mean LE was analyzed constant fluctuation trend regardless of the smoothing window length. Conclusion: Based on these results, we expected that using the mean LE and 300ms window length increased reproducibility and signal noise ratio during repetitive dynamic muscle contraction. Application: These results can be used to provide fundamental information for repetitive dynamic EMG signal processing.

Thermotherapy and Dynamic Warm-up on the Kinetic Parameters during Drop-landing (드롭랜딩 시 국소부위 온열처치와 동적 준비운동이 하지의 운동역학적 변인에 미치는 영향)

  • Kim, Sungmin;Song, Jooho;Han, Sanghyuk;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.297-307
    • /
    • 2021
  • Objective: The aim of this study was to analyze kinetic variables between thermotherapy and dynamic warm-up during drop-landing. Method: Twenty male healthy subjects (Age: 21.85 ± 1.90 years, Height: 1.81 ± 0.06 cm, Weight: 68.5 ± 7.06 kg) underwent three treatments applied on the thermotherapy of femoral muscles and a dynamic warm-up. The thermotherapy was performed for 15 minutes while sitting in a chair using an electric heating pad equipped with a temperature control device. Dynamic warm-up performed 14 exercise, a non-treatment was sitting in a chair for 15 minutes. Core temperature measurements of all subjects were performed before landing at a height of 50 cm. During drop-landing, core temperature, joint angle, moment, work of the sagittal plane was collected and analyzed. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that Thermotherapy was increased temperature than other treatments (p = .000). During drop-landing, hip joint of dynamic warm-up was slower for angular velocity (p < .005), and left ankle joint was fastest than other treatments (p = .004). Maximum joint moment of dynamic warm-up was smaller for three joints (hip extension: p = .000; knee flexion/extension: p = .001/.000; ankle plantarflexion: p = .000). Negative work of dynamic warm-up was smaller than other treatments (p = .000). Conclusion: In conclusion, the thermotherapy in the local area doesn't affect the eccentric contraction of the thigh. The dynamic warm-up treatment minimized the joint moment and negative work of the lower joint during an eccentric contraction, it was confirmed that more active movement was performed than other treatment methods.

Difference of Trunk Muscles Activity during Hollowing vs Bracing Contraction in Various Position (다양한 자세에 따른 복부 할로잉과 브레이싱 수축시 체간근 활성도의 차이)

  • Moon, Hyun-Ju;Cho, Sung-Hak;Goo, Bong-Oh
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the difference of trunk muscles activity during abdominal hollowing and bracing contraction in various position. METHODS: This pilot test was carried out in a volunteer sample of normal adults(n=24) without a history of low back pain or injury. 24 subjects were randomly allocated to three groups(n=8) as a contraction method respectively. In hooklying position, trunk muscles activity of subjects was measured using EMG in various bridging position. RESULTS: Abdominal bracing contraction made to more great trunk deep and superficial muscles activity than hollowing contraction.(p<0.00) Especially, Multifidus activity was the biggest.(p<0.00) CONCLUSION: The result from this study showed that abdominal bracing contraction made to more balancing activity of trunk muscles than abdominal hollowing contraction. Thus, It will good for trunk muscles unbalanced LBP patient to improve lumbar stabilization.

Dynamic Electromyography Analysis of Shoulder Muscles for One-handed Manual Material Handling

  • Mo, Seung-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.313-326
    • /
    • 2015
  • Objective: The objective of this research is to quantitatively analyze muscle activities of arm and shoulder, according to direction in various types of one-handed manual material handling, based on surface electromyography. Background: Workers in industrial sites frequently carry out one-handed manual material handling using arm and shoulder muscles. Therefore, chronic load and accumulated fatigue occur to arm and shoulder muscles, which becomes a main cause of upper arm and shoulder musculoskeletal disorders. The shoulder muscles have widely range of motion, and complex interactions take place among various muscles including rotator cuff muscles. In this regard, research on interactions among should muscles, according to such various dynamic motions, is required. Method: Ten male subjects in their 20s participated in this research. This research considered upward, downward, leftward, rightward, forward and backward directions and fourteen muscles around arm and shoulder (biceps brachii and trapezius, etc.) as independent variables. The mean muscle activity was set as the dependent variable. This research extracted $4^{th}{\sim}7^{th}$ repetition signals according to ten times of repetitive muscle contraction, and analyzed the muscle activity concerned using the envelope detection technique. Results: The mean muscle activity of upward direction was analyzed highly statistically significant. The reason is that the effect of gravity works to arm and shoulder muscles. Also, it is conjectured that deformation of coracoacromial ligament was caused, and its contact pressure increased, due mainly to the shoulder flexion, and therefore load was analyzed high. Muscle activity was analyzed significantly low, according to concentric ballistic motion used in the concentric contraction phase by storing elastic energy in the eccentric contraction phase with a motion to bring the weight to the front of subject's body as to downward, leftward and backward directions. Because, elbow joint's flexion-extension motions mainly occurred, biceps brachii was analyzed high muscle activity as the prime mover. Conclusion: The information on the quantitative load of muscles can be applied to ergonomic work design for one-handed manual material handling to minimize muscle load. Application: This research has effectively identified muscle activity according to dynamic contraction by applying an envelope detection technique. The results can be used for ergonomic work design to minimize muscle load during the one-handed manual material handling, according to each direction. The research results are expected to be used for musculoskeletal disorder prevention and physiotherapy in the rehabilitation medical field, based on the muscle load of arm and shoulder in various directions.

Effect of Forearm Dynamic Taping on Muscle Activity of Extensor Carpi Radialis Brevis During Wrist Isometric and Isotonic Contraction (아래팔 다이나믹 테이핑 적용에 의한 손목 등척성과 등장성 수축 시 짧은 노쪽손목폄근 근활성도의 변화)

  • Huang, Tian-zong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Background: Lateral epicondylitis (LE) is the most common chronic musculoskeletal conditions of the upper extremity with pain and wrist extension disability. The tendon which is most affected is the extensor carpi radialis brevis (ECRB). Previous study evaluated the effect of taping technique on patient with LE, but no study investigated the changes of electromyography (EMG) on ECRB when using dynamic taping (DT) technique. Objects: The aim of this study was to investigate the effect of DT technique using dynamic tape on muscle activity of ECRB during wrist isometric extension, isotonic extension and flexion. Methods: Twenty-one healthy subjects volunteered to participate in this study. Subjects were instructed to perform wrist isometric extension, isotonic extension and flexion without and with DT on origin area of ECRB. Wrist isometric extension was performed at 75%, 50% and 25% (%maximal voluntary contraction force), respectively, based on maximum contraction force. Isotonic extension and flexion test used dumbbell. EMG data was collected from ECRB. Results: EMG of ECRB were statistically significant decrease in wrist isotonic extension after DT (p < 0.05). Significant increase in wrist isometric extension during 25% and 50% force task (p < 0.05). Conclusion: This study applied DT technique to suppress the wrist extensor muscles in 21 healthy adults in their twenties. Change in muscle activity was compared in the ECRB muscle during wrist isometric extension, isotonic extension and flexion task. Based on the results of this study, the DT technique applied to the wrist and forearm area can reduce the load on the wrist extensors when the wrist performs various movements during daily life movements or repetitive tasks, and by using these effects, excessive stress is applied to tennis elbow patients.

The Effects of Stabilization Exercise on Muscle Performance according to Bearing Surface (지지면에 따른 안정화 운동이 근수행력에 미치는 영향)

  • Park, Jae-Cheol;Han, Jong-Man;Kim, Yong-Seong;Kim, Yong-Nam
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • Purpose : This study purposed to analyze how dynamic stabilization exercise on an unstable surface, and static stabilization exercise on muscle strength and endurance. Methods : For this study we sampled 9 people for the unstable surface dynamic stabilization exercise group, 9 for the stable surface static stabilization exercise group, and 9 for the control group. In order to examine muscle strength and endurance, we measured changes in the maximal voluntary isometric contraction (MVIC) using a dynamometer before, 3 weeks after, and 6 weeks after the experiment. Results : First, with regard to change in muscle strength, flexion strength showed a significant change in interaction by time (p<0.05). Extension strength showed a significant change in interaction by time (p<0.05). Second, with regard to change in endurance, flexion endurance showed a significant change in interaction by time (p<0.05). Extension endurance showed a significant change in interaction by time (p<0.05). Conclusion : In conclusion, this study confirmed significant changes in interaction between the groups and by time with regard to changes in muscle strength and endurance. These results suggest the potential of surface dynamic stabilization exercise as a clinical intervention.

The Effect of Working Hour on Muscle Fatigue in Visual Display Workplace (VDT 작업환경에서 작업시간이 근피로에 미치는 영향)

  • 한정수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.153-160
    • /
    • 2000
  • Occupational cumulative traumas (CTDs) are becoming one of leading ailments in industrialized worl $d^{(1.2)}$. The degree of muscle fatigue is important parameter to understand cause of occupational cumulative trauma disorders. To quantify degree of muscle fatigue, muscle EMG activity was measured during isometric and dynamic contractions(repetitive concentric/eccentric muscle contraction) and its analyzed data, such as RMS, median frequency, and median power were compared when the muscle was fresh and exhausted. When muscle become fatigue, it was observed that median frequency decreased and median power and RMS increased However, based on overall prolonged observation, median frequency increased and median power and RMS decreased. Therefore it was concluded that shifting patterns of RMS, median frequency, and median power values can be used as parameter to evaluate degree of muscle fatigue even in dynamic muscle contraction.

  • PDF

The Effectiveness of Upper Limb Offload Dynamic Taping Technique on Scapular Muscles Activation During Elevation in Healthy Subjects (상지 부하감소 다이나믹 테이핑 기법이 정상인의 어깨 올림 시 어깨뼈 주위근의 근활성도에 미치는 영향)

  • Huang, Tian-zong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.93-101
    • /
    • 2020
  • Background: For performing various movements well, cooperation between the muscles around the scapula and shoulder has been emphasized. Taping has been widely used clinically as a helpful adjunct to other physiotherapy methods for shoulder pathology and dysfunction treatment. Previous studies have evaluated the effect of taping techniques using dynamic tapes on shoulder function and pain. However, no study investigated the electromyographic (EMG) changes in the shoulder muscles. Objects: This study aimed to investigate the effect of the upper limb offload taping technique using a dynamic tape on EMG activities of the upper trapezius (UT), lower trapezius, serratus anterior (SA), and middle deltoid (MD) muscles during scaption plane elevation. Methods: A total of 26 healthy subjects (19.85 ± 6.40 years, male = 20) volunteered to participate in this study. The subjects were instructed to perform scaption elevation with and without dynamic taping on the shoulder. Shoulder elevation strength tests were performed at 100%, 75%, 50%, and 25%, for the maximal isometric contraction force. Results: There were statistically significant interaction effects between the taping application and shoulder scaption elevation force in EMG activities in the UT (p < 0.05) and MD (p < 0.05). EMG activities in the UT showed significant increases in 50%RVC (reference voluntary contraction, p < 0.05) and 25%RVC (p < 0.01). Furthermore, the EMG activity of the SA significantly increased in 50%RVC (p < 0.01) and 25%RVC (p < 0.01) after dynamic taping. For the MD, the EMG activity level significantly decreased in 100%RVC (p < 0.05). Conclusion: These results indicated that upper limb offload dynamic taping application affects the muscle activities of some shoulder muscles depending on different scaption elevation strength levels. Therefore, we suggest that the upper limb offload dynamic taping can be applied to the shoulders when patients need middle deltoid inhibition or upper trapezius facilitation, such as patients with shoulder impingement syndrome.

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

Dynamic Balance and Muscle Activity of the Trunk and Hip Extensor Following the Wearing of Pelvic Compression Belt (골반압박벨트 착용에 유무에 따른 동적 균형과제 수행 시 균형과 체간근과 고관절 신전근의 근활성도 비교)

  • Lee, Ji-Eun;Yi, Chung-Hwi;Kwon, Oh-Yun;Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.22 no.1
    • /
    • pp.49-57
    • /
    • 2015
  • The purpose of this study was to investigate the dynamic balance and activity of internal oblique muscle, multifidus muscle, gluteus maximus muscle, biceps femoris muscle during the Y balance test following the wearing of pelvic compression belt. Forty healthy adults were recruited for this test. The dynamic balance score was estimated as the following: (anterior+posteromdial+posterolateral)/($3{\times}leg$ length)${\times}100$. The electromyography signals were measured through %reference voluntary contraction, which was normalized by reference voluntary contraction of Y balance test without wearing the pelvic compression belt. The paired t-test was carried out to compare the dynamic balance score and the activity of the trunk and hip extensor with and without the wearing of pelvic compression belt. The dynamic balance score of the Y balance test when wearing pelvic compression belt was significantly than when measured without wearing the pelvic compression belt (p<.05). The muscle activity of the internal oblique and the multifidus was significantly decreased when wearing pelvic compression belt (p<.05). The muscle activity of the gluteus maximus was significantly increased when wearing pelvic compression belt (p<.05). However, there was no significant difference in hamstring muscle activity, with or without wearing the belt (p>.05). In conclusion, this study shows that the wearing of pelvic compression belt affects trunk muscle and hip extensor muscle activity related to the pelvic mobility and stability and increases dynamic balance and also contributes to the stabilization of the external pelvic stabilization.