• Title/Summary/Keyword: Dynamic coefficient

Search Result 1,299, Processing Time 0.035 seconds

In-situ dynamic loading test of a hybrid continuous arch bridge

  • Gou, Hongye;Li, Liang;Hong, Yu;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.809-817
    • /
    • 2021
  • In this study, the dynamic behavior of a three-span hybrid continuous arch bridge under vehicle loading is investigated. The natural vibration characteristics of the bridge were analyzed through pulsation test. In the dynamic loading test, the vibrations of the bridge under different truck speeds and different pavement conditions were tested, and time histories of deflection and acceleration of the bridge were measured. Based on the dynamic loading test, the impact coefficient was analyzed. The results indicate that the pavement smoothness had more impacts on the vibration of the bridge than the truck's speed. The vertical damping of the bridge under the excitation of the trucks is larger than the transverse damping. Resonance occurs at the side span of the bridge under a truck at 10 km/h.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

Evaluation of Dynamic Thrust Under Wind Shear in Wind Turbine Below Rated Wind Speed (정격풍속 이하에서 풍력터빈의 윈드쉬어 추력 동하중 개발)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • As wind turbines are getting larger in size with multi-MW capacity, the blades are getting longer, over 40 m, and hence the asymmetric loads produced during the rotation of the rotor blades are increasing. Some factors such as wind shear, tower shadow, and turbulence have an effect on the asymmetric loads on the blades. This paper focuses on a method of modeling the dynamic load acting on a blade because of thrust variation under wind shear. A method that uses thrust coefficient is presented. For this purpose, "wind shear coefficient of thrust variation" is defined and introduced. Further, we calculate the values of the "wind shear coefficient of thrust variation" for a 2 MW on-shore wind turbine, and analyze them for speeds below the rated wind speed. Then, we implement a dynamic model that represents the thrust variation under wind shear on a blade, using MATLAB/Simulink. It is shown that it is possible to express thrust variations on three blades under wind shear by using both thrust coefficient and "wind shear coefficient of thrust variation."

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀룰로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-Oh;Kim, Kyoung-Woo;Yang, Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-462
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose absorber has been developed with waste paper through adjustment of various mix proportions. The developed cellulose absorber has been tested for its acoustic properties such as absorption coefficient and dynamic stiffness. The absorption coefficient was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorption coefficient and 4.7 $MN/m^3$ was indicated in dynamic stiffness. Also, for practical use of developed absorbers as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool absorbers and constructed drywall of gypsum board. The results have shown 55 dB(Rw) of sound reduction index in glass-wool wall and 46 dB(Rw) in cellulose.

Estimation of resistance coefficient of PHC bored pile by Load Test (재하시험에 의한 PHC 매입말뚝의 저항계수 산정)

  • Park, Jong-Bae;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.233-247
    • /
    • 2017
  • In Europe and the USA, the use of limit state design method has been established, and the Korea Ministry of Land, Transport and Maritime Affairs has implemented the bridge substructure design standard based on the critical state. But Korean piling methods and ground conditions are different from Europe and USA, the limit state design method can not be used immediately. In this study, the resistance coefficient was proposed by comparing and analyzing the results of the static load test(9 times) and dynamic load tests(9 times of EOID and 9 times of Restrike) with the bearing capacity calculated by Meyerhof(LH design standard, Road bridge design standard) method and surcharge load method(using Terzaghi's bearing capacity coefficient and Hansen & Vesic's bearing capacity coefficient). The previous LHI study showed the resistance coefficient of the LH design standard was 0.36 ~ 0.44, and this research result showed the resistance coefficient was 0.39 ~ 0.48 which is about 8% higher than the previous study. In this study, we tried to obtain the resistance coefficient mainly from the static load test and the resistance coefficient was 0.57 ~ 0.69(Meyhof method : LH design standard) based on the ultimate bearing capacity and the resistance coefficient was 0.49 ~ 0.60(Meyhof method : LH design standard) based on the Davissons bearing capacity. The difference of the resistance coefficient between the static and dynamic load test was greater than that we expected, we proposed the resistance coefficient(0.52 ~ 0.62 : Meyerhof method: LH design standard) using the modified bearing capacity of the dynamic load test. Summarizing the result, the coefficient of resistance obtained from the static and dynamic load tests was 0.35 ~ 0.76, which is greater than 0.3 suggested by the Road bridge design standard, so the economical design might be possible using the coefficient of resistance proposed by this study.

Probabilistic Structural Safety Assessment Considering the Initial Shape and Non-linearity of Steel Cable-Stayed Bridges (강사장교의 초기형상과 비선형성을 고려한 확률론적 구조안전성 평가)

  • Bang, Myung-Seok;Han, Sung-Ho;Lee, Woo-Sang;Lee, Chin-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In this study, the advanced numerical algorithm is developed which can performed the static and dynamic stochastic finite element analysis by considering the effect of uncertainties included in the member stiffness of steel cable-stayed bridges and seismic load. After conducting the linear and nonlinear initial shape analysis, the advanced numerical algorithm is the assessment tool which can performed structural the response analysis considering the static linearity and non-linearity of before or after induced intial tensile force, and examined the reliability assessment more efficiently. The verification of the developed numerical algorithm is evaluated by analyzing the regression analysis and coefficient of correlation using the direct monte carlo simulation. Also, the dynamic response characteristic and coefficient of variation of the steel cable-stayed bridge is calculated by considering the uncertainty of random variables using the developed numerical algorithm. In addition, the quantitative structural safety of the steel cable-stayed bridges is evaluated by conducting the reliability assessment based upon the dynamic stochastic finite element analysis result.

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve (전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구)

  • 김고도;김수태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

A Comparative Study on the Bearing Capacity of Dynamic Load Test and Static Load Test of PHC Bored Pile (PHC 매입말뚝의 동재하시험과 정재하시험의 지지력 비교·분석 연구)

  • Park, Jongbae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.19-31
    • /
    • 2017
  • In case of USA, the drilled shaft and the driven pile in the field showed a good correlation in the analysis of the bearing capacity between the dynamic load test and the static load test. However, in Korea, we mainly install the bored pile, which is not widely used overseas and we tried to confirm the reliability of the dynamic load test on the bored pile, because many people questioned the reliability of it. In this study, load tests were carried out on PHC bored piles in LH field (Cheonan, Incheon, Uijeongbu), and the bearing capacity of the dynamic load test (EOID 7times, Restrike 7times) and the static load test (7times) were compared and analyzed. As a result, the average of the bearing capacity of the static load test was 27% higher than that of the dynamic load test (reliability : 0.73, coefficient of variation : 0.3). And the average of the bearing capacity of the static load test (Davisson) was 27% higher than that of the bearing capacity of the dynamic load test (Davisson) (reliability : 0.73, coefficient of variation : 0.2). To reduce the difference between the bearing capacity of the dynamic load test and the static load test, we proposed modified bearing capacity of dynamic load test (base bearing capacity of EOID + skin frictional force of restrike) and difference between the bearing capacities was reduced to 9% (reliability : 0.91, coefficient of variation : 0.2). And the coefficient of variation was reduced to 0.2 and the consistency of analysis increased.

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.