정보 기술과 인터넷의 발전은 멀티미디어 컨텐츠의 양에 있어서 폭발적인 성장을 가져 왔으며 이러한 멀티미디어 컨텐츠 양의 증가는 이용자의 요구에 맞는 멀티미디어 컨텐츠 추천에 대한 필요성을 더 증가 시켰다. 현재까지 일반상품과 멀티미디어 컨텐츠 추천을 위한 기법에는 협업필터링 (CF: Collaborative Filtering)이 있다. 하지만 기존의 CF 기법은 이미지가 갖고 있는 시각적 특징을 제대로 표현하지 못하고 있으며, 입력 데이터의 희박성 (Sparsity) 문제와 신상품 추천 문제 그리고 선호도의 동적인 변화 문제를 포함하고 있기 때문에 이미지 컨텐츠 추천에는 적합하지 않다. 이와 같은 기존의 CF기법의 단점을 해결하기 위해서 본 논문에서는 새로운 이미지 추천 방법으로 FBCF (Feature Based Collaborative Filtering) 기법을 제안한다. FBCF 기법은 시각적 특징을 선호도에 따라 군집화한 새로운 사용자 프로파일 구성방법을 제시하며, 선호도 피드백을 통하여 구매자의 현재 성향을 추천에 반영할 수 있다. 실제 모바일 이미지 데이터를 사용한 실험에서 FBCF 기법이 기존의 CF 기법보다 400% 향상된 성능을 보임을 확인할 수 있다.
In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).
온라인 미디어 플랫폼의 발전 및 코로나19 사태로 디지털 영상 콘텐츠의 양산과 소비가 급증하고 있다. 이용자들은 디지털 영상 콘텐츠를 선택하기 위해 썸네일, 티저 영상 등을 통하여 짧은 시간에 콘텐츠를 파악하고 본인에게 맞는 디지털 영상 콘텐츠를 선정하여 시청하고 있다. 세계 곳곳에서 생산되는 모든 디지털 영상 콘텐츠를 일일이 확인하고, 이용자가 선택할 수 있게 티저 영상을 수작업으로 편집하는 것은 매우 불편한 작업이다. 본 연구에서는 티저 영상을 자동으로 생성하기 위해 YCbCr 컬러 모델을 기반으로 키프레임을 추출하고, 클러스터링 기법을 통해 추출된 키프레임을 최적화한다. 마지막으로 최종 추출된 키프레임을 연결하여 사용자들의 디지털 영상 콘텐츠 확인을 도와 주기 위한 티저 영상을 제작하는 방법을 제시한다.
활기 넘치는 거리를 만들기 위해서는 다양한 종류의 상업시설의 입지가 필요하다. 상업시설은 지역 유동인구 증가에 영향을 미치는 가장 중요한 요소이다. 따라서 상업시설의 다양성이 높을수록 소비 활성화에 기여할 것이라는 추론이 가능하다. 이와 관련하여 본 연구는 상업시설의 혼합이 소비중심지수에 미치는 영향을 알아보았다. 본 연구는 2021년을 시간적 범위로 설정하였으며, 공간적 범위는 서울시로 하였다. 커널밀도분석을 통하여 산출한 소비중심지수를 종속변수로 하고, 상업 특성을 반영한 요인과 도시 특성 등을 반영한 요인을 독립변수로 설정하여 분석을 진행하였다. 분석 방법은 공간회귀분석을 활용하였고 분석단위는 행정동으로 설정하였다. 분석을 통하여 이종업종의 집적보다 동종업종의 집적이 소비 활성화에 긍정적인 영향을 미치는 것을 확인하였다. 또한 소비 활성화에 긍정적인 영향을 미치는 업종들의 집적이 필요하다는 시사점을 확인하였다. 본 연구의 분석 결과는 소비시장에서 상업시설 입지 정책의 효율적인 관리에 시사점을 제공할 수 있을 것으로 기대된다.
본 논문에서는 네트워크 기반 대용량의 자원들을 효율적으로 검색하기 위해 사용자의 요구사항에 기반해 검색에 요구되는 태그들 간의 의미론에 기반한 동적 가상 온톨로지(Dynamic Virtual Ontology using Tags: DyVOT)를 추출하고 이를 이용한 동적 검색 방법론을 제안한다. 태그는 소셜 네트워크 서비스를 지원하거나 이로부터 생성되는 정형 및 비정형의 다양한 자원들에 대한 자원을 대표하는 특성을 포함하는 메타적 정보들로 구성된다. 따라서 본 연구에서는 이러한 태그들을 이용해 자원의 관계를 정의하고 이를 검색 등에 활용하고자 한다. 관계 등의 정의를 위해 태그들의 속성을 정의하는 것이 요구되며, 이를 위해 태그에 연결된 자원들을 이용하였다. 즉, 태그가 어떠한 자원들을 대표하고 있는 지를 추출하여 태그의 성격을 정의하고자 하였고, 태그를 포함하는 자원들이 무엇인지에 의해 태그간의 의미론적인 관계의 설정도 가능하다고 보았다. 즉, 본 연구에서 제안하는 검색 등의 활용을 목적으로 하는 DyVOT는 태그에 연결된 자원에 근거해 태그들 간의 의미론적 관계를 추출하고 이에 기반 하여 가상 동적 온톨로지를 추출한다. 생성된 DyVOT는 대용량의 데이터 처리를 위해 대표적인 예로 검색에 활용될 수 있으며, 태그들 간의 의미적 관계에 기반해 검색 자원의 뷰를 효과적으로 좁혀나가 효율적으로 자원을 탐색하는 것을 가능하도록 한다. 이를 위해 태그들 간의 상하 계층관계가 이미 정의된 시맨틱 태그 클라우드인 정적 온톨로지를 이용한다. 이에 더해, 태그들 간의 연관관계를 정의하고 이에 동적으로 온톨로지를 정의하여 자원 검색을 위한 동적 가상 온톨로지 DyVOT를 생성한다. DyVOT 생성은 먼저 정적온톨로지로부터 사용자 요구사항을 포함하는 태그를 포함한 부분-온톨로지들을 추출하고, 이들이 공유하는 자원의 정도에 따라 부분-온톨로지들 간의 새로운 연관관계 여부를 결정하여 검색에 요구되는 최소한의 동적 가상 온톨로지를 구축한다. 즉, 태그들이 공유하는 자원이 무엇인가에 의해 연관관계가 높은 태그들 간에는 이들의 관계를 설명하는 새로운 클래스를 가진 생성된 동적 가상 온톨로지를 이용하여 검색에 활용한다. 온톨로지의 인스턴스는 자원으로 정의되고, 즉 이는 사용자가 검색하고자 하는 해로서 정의된다. 태그들 간의 관계에 의해 생성된 DyVOT를 이용해 기존 정적 온톨로지나 키워드 기반 탐색에 비해 검색해야 할 자원의 량을 줄여 검색의 정확성과 신속성을 향상 시킨다.
빅 데이터 관련 주요 논제 중의 하나는 방대한 시간 기반 또는 원격 측정 데이터의 가용성에 관한 문제이다. 현재 저비용 획득 및 저장 장치의 등장은 더 세밀한 분석에 사용될 상세한 시간 데이터를 얻을 수 있어서 배후 시스템에 대해 여러 가지 지식을 갖거나 미래의 이벤트를 더 정확히 예측할 수 있다. 특히, 스마트 미터가 설치된 수많은 가정 및 기업 등을 대상으로 전기 사용에 관한 고객 맞춤형 계약을 정의하는 것은 다른 무엇보다도 중요한 문제이다. 수많은 스마트 미터 데이터를 바탕으로 공통적인 전력 소비 형태를 몇 가지 그룹으로 구분할 필요가 있다. 이에 본 연구에서는 스마트 미터 측정 관련 공개 데이터와 자바 기반 공개 소스인 KNIME 플랫폼을 사용하여 스마트 미터 관련 빅 데이터 변환과 클러스터링을 나타낸다. 빅 데이터 구성 요소는 공개 소스는 아니지만, 시험판으로 사용할 수 있다. 스마트 미터 빅 데이터를 가져오고, 정리하고, 변환한 후 전력 사용량 행위와 관련된 각 미터 ID의 해석과 클러스터링에 적합한 DTW 접근 방식을 통해 전력 사용 행위에 관한 스마트 계약을 정의할 수 있다.
본 연구에서는 호소의 환경 특성 및 시간에 따른 동물 플랑크톤 윤충류 군집 변동 특성을 분석하기 위해, 전라남도에 위치하여 유사한 기상 조건을 가지나 규모와 수질 환경이 서로 다른 29개 호소를 선정, 2008년부터 2016년까지 분기별 윤충류 출현 개체수 및 종 수의 시계열 자료를 수집하였다. 조사기간 중 각 호소의 윤충류 출현 개체수 및 종 수의 범위, 이상치 및 변동계수(CV)를 비교하였으며, 동적 시간 워핑(dtw) 분석을 통해 각 호소의 윤충류 군집 시계열 경향을 비교하여 유사 정도를 바탕으로 분류(clustering)하고, 주성분 분석을 통해 분류된 호소의 환경 특성과의 관계를 분석하였다. 윤충류 개체수에서 보다 빈번한 이상치 출현과 높은 변동성을 보인 호소에는 상대적으로 저수용량이 적은 소규모 호소가 많았던 반면, 출현종 수에서는 뚜렷한 경향이 관찰되지 않았다. 타 호소들과 윤충류 개체수의 시간적 변동 경향이 상이하게 나타난 일부 호소들에서 화학적 산소 요구량(COD)과 양의 상관관계를, 식물플랑크톤 현존량 변동 및 지각류 상대풍부도 변동과 음의 상관관계를 갖는 것으로 나타나 윤충류 출현 개체수의 시계열 경향에 영향을 미치는 잠재적인 요인으로 분석되었다.
무선 센서 네트워크에서 LEACH와 같은 클러스터링 프로토콜은 전체 네트워크의 수명을 연장시키는 효율적인 방법이지만 클러스터 헤드 노드에 높은 부하를 주게 되어 급격한 에너지 소모를 유발하는 문제가 있다. 따라서 클러스터의 구성과 클러스터 헤드 노드의 역할을 주기적으로 교체하여 네트워크의 수명을 연장시켰다. 그러나 이 방법은 클러스터를 구성하는 과정에서 상당한 량의 에너지 소모를 보인다. 따라서 본 논문은 소모되는 에너지의 효율성 증대를 위해 클러스터링 알고리즘을 제안하였다. 이 알고리즘에서 서로 인접한 노드들은 intra cluster를 이루며 이 클러스터를 구성하는 노드들은 라운드 로빈 형태로 데이터를 수집하고 전송한다. 전체 네트워크의 관점에서 볼 때 이 intra cluster는 한개의 노드로 취급된다. 한 라운드의 setup단계에서 intra cluster들은 클러스터 헤드(intra cluster)에 의해 다시 클러스터를 형성(network cluster)하게 된다. 클러스터 헤드가 된 intra cluster의 모든 멤버노드는 라운드 로빈 방식으로 클러스터 헤드 역할을 수행한다. 따라서 intra cluster의 크기에 의해 라운드의 주기를 연장할 수 있다. 또한 steady-state에서 각 intra cluster의 노드는 라운드 로빈 방식으로 데이터를 수집하며 network cluster의 클러스터 헤드에 전송한다. 성능분석 결과 제안하는 방법은 제안된 클러스터링 방법에 비해 노드들의 에너지 소모가 줄어들었으며 전송 효율이 증가하였다.
본 논문에서는 시간 흐름을 고려한 특징추출과 군집분석을 이용한 헬스 리스크 관리를 제안한다. 제안하는 방법은 세단계로 진행한다. 첫 번째는 전처리 및 특징추출 단계이다. 이는 웨어러블 디바이스를 이용하여 라이프로그를 수집하여 불완전데이터, 에러, 잡음, 모순된 데이터를 제거하며 결측 값을 처리한다. 그 다음 특징추출을 위해 주성분 분석을 통해 중요 변수를 선택하고, 상관계수와 공분산을 통해 데이터 간의 관계와 유사한 데이터들의 분류를 진행한다. 또한 라이프로그에서 추출한 특징을 분석하기 위해 시간의 흐름을 고려하여 K-means 알고리즘을 통해 동적 군집을 진행한다. 새로운 데이터는 오차 제곱합의 증가분을 기반으로 유사성 거리 측정 방법을 통해 군집을 진행하고, 시간의 흐름을 고려하여 군집에 대한 정보를 추출한다. 따라서 특징 군집을 통해 헬스 의사결정 시스템을 이용하여 신체적 특성, 생활습관, 질병여부, 헬스케어 이벤트 발생위험, 예상 정도 등의 요소를 통해 리스크를 관리할 수 있다. 성능평가는 Precision, Recall, F-measure을 사용하여 제안하는 방법과 퍼지방법, 커널기반 방법을 비교한다. 평가결과 제안하는 방법이 우수하게 평가된다. 따라서 제안하는 방법을 통해 유병자와의 유사도를 이용하여 정확한 사용자의 잠재적 건강 위험을 예측 및 적절한 관리가 가능하다.
이 연구에서는 토픽 모델링 결과 해석의 용이성을 위하여, 동적 인용 네트워크를 활용하여 LDA 기반 토픽 모델링의 토픽 수를 설정하고 중복 배치된 주요 키워드를 자아 중심 네트워크 분석을 통해 재배치하여 제시하는 방법을 제안하였다. 'White LED' 두 분야의 논문 데이터를 이용하여 분석한 결과, 동적 인용 네트워크 분석을 통해 형성된 분석대상 문헌집단에 혼잡도에 따른 토픽수를 사용하고 중복 분류된 토픽 내 주요 키워드를 자아중심 네트워크 분석 기법을 적용하여 재배치한 결과가 토픽 간의 중복도가 가장 낮은 것으로 나타났다. 따라서 동적 인용 네트워크 및 자아 중심 네트워크 분석을 적용함으로써 토픽모델링에 의한 분석 결과를 보완하는 다면적인 연구 동향 분석이 가능할 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.