• 제목/요약/키워드: Dynamic behaviour

검색결과 531건 처리시간 0.02초

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

연속계 해석에 의한 보오링바의 비선형 동적 거동

  • 박수길;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.137-141
    • /
    • 1993
  • In the case of a boring bar, the vibration amplitude is generallylarge due to its high slenderness. The boring bat is then modelled as a cantilever with dynamic force acting at the free end and a generalized model of nonlinear continous system is obtained. The Analysis of model is conducted for the specific case with a zero side cutting edge angle. The dynamic behaviour is investigated for machining processes in which the the overlap factor of regenerative effect is considered. The vibration characteristics of boring bar depth of cut rather than feed rate in given slenderness.

Prediction of the dynamic flow stress

  • Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.495-504
    • /
    • 2005
  • This article explores a constitutive equation that is able to correlate stress, strain and strain rate. In order to show the advantages of the constitutive equation here proposed and how its material parameters are obtained, data extracted from the literature, for materials as different as polymers and metallic alloys, are used. Finite element simulation of the impact behaviour of a beam is presented to highlight the care one needs to exercise when using the more traditional Cowper-Symonds equation. The present constitutive equation has shown to be accurate for a wide range of strains, stresses and strain rates.

수중 모래지반의 동수압 발현 (Discussion of Dynamic Fluid Pressures of a Submerged Deposit of Sand)

  • 김하영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.546-551
    • /
    • 2006
  • This study is concerned with the dynamic behaviour of a fluid layer and a submerged deposit of sand in a rigid rectangular container when subjected to horizontal shaking. Detailed analyses are made of the interaction between the fluid pressure field and the excess pore pressure changes in the sand deposit, in terms of finite-element modelling as well as of two-layer fluid theory. It is shown that the predicted performance compares favourably with what has been observed in centrifugal shaking-table testing on submerged sand deposits.

  • PDF

회전형 Friction Damper의 거동 특성 연구 (Performance of Rotational Friction Dampers Under earthquake excitation)

  • 배춘희;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.810-813
    • /
    • 2004
  • A study on the dynamic response of single-storey steel frames equipped with a rotational friction damper is presented. Extensive testing was carried out for assessing the friction pad material, damper unit performance and foaled model frame response to lateral harmonics excitation. Numerical simulations based on non-linear time history analysis were used to evaluate the seismic behaviour of steel frames with rotational frictional damper. It Is demonstrated that using discrete friction dampers of proper parameters to link steel frame can reduce dynamic response significantly.

  • PDF

소형 회전식 압축기의 동수압적 윤활해석 (Hydrodynamic Lubrication Analysis of a Small Rotary Compressor)

  • 송기선;장시열;한동철
    • Tribology and Lubricants
    • /
    • 제4권1호
    • /
    • pp.74-80
    • /
    • 1988
  • For an analytic investigation on the dynamic behaviour of the eccentric piston and roller in the cylinder of small rotary vane compressors the hydrodynamic lubrication theory is opplied, analogous to the dynamic analysis of a engine bearing. An adequate modification of the equation of journal motion permits stable convergencies of the numeric calculation of the journal orbits. The increase of the outer diameter of the roller and the eccentricity of the piston gives a relative large decrease of the minimum gap between the roller and cylinder.

Dynamic percolation grid Monte Carlo simulation

  • Altmann Nara;Halley Peter J.;Nicholson Timothy M.
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.7-16
    • /
    • 2007
  • A dynamic Monte Carlo percolation grid simulation is used to predict the cure behaviour of thermoset materials. Molecules are distributed in a fixed grid and a probability of reaction is assigned to each pair of neighbouring units considering both reaction rates and diffusion. The concentration and network characteristics are predicted throughout the whole curing process and compared to experimental data for an epoxy-amine matrix.

Dynamic Characteristics of Short Circuit in Pulse Gas Metal Arc Welding of Aluminum

  • Praveen, P;Kang, M.J.;Prasad, Yarlagadda K.D.V.;Kang, B.Y.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.317-320
    • /
    • 2005
  • In this paper, dynamic behaviour of short circuit occurring in Pulse Gas Metal Arc Welding (GMAW-P) is investigated Welding experiments with different values of pulsing parameters, high speed camera pictures and welding signals such as current and voltage were acquired to identify short circuit conditions in GMAW-P.

  • PDF

Seismic performance evaluation for steel MRF: non linear dynamic and static analyses

  • Calderoni, B.;Rinaldi, Z.
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.113-128
    • /
    • 2002
  • The performance of steel MRF with rigid connections, proportioned by adopting different capacity design criteria, is evaluated in order to highlight the effectiveness of static non-linear procedure in predicting the structural seismic behavior. In the framework of the performance-based design, some considerations are made on the basis of the results obtained by both dynamic time histories and push-over analyses, particularly with reference to the damage level and the structure ability to withstand a strong earthquake.

Dynamic response of elasto-plastic planar arches

  • Lee, S.L.;Swaddiwudhipong, S.;Alwis, W.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.9-23
    • /
    • 1996
  • The behaviour of elasto-plastic planar arches subjected to dynamic loads in presented. The governing equations are formulated through the dynamic equations and compatibility conditions. The latter is established by applying the generalized conjugate segment analogy. Bending moments at the nodes and axial forces in the members are considered as primary variables in the elastic regime. They are supplemented by the rotations at the nodes and dislocations in the elements when plastic hinges occur. Newmark-${\beta}$ method is adopted in the time marching process. The interaction diagram of each element is treated as the yield surface for the element and the associated flow rule is enforced as plastic flow occurs. The method provides good prediction of dynamic response of elasto-plastic arches while requiring small core storage and short computer time.