• Title/Summary/Keyword: Dynamic access time

Search Result 282, Processing Time 0.035 seconds

A Generalized Markovian Based Framework for Dynamic Spectrum Access in Cognitive Radios

  • Muthumeenakshi, K.;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1532-1553
    • /
    • 2014
  • Radio spectrum is a precious resource and characterized by fixed allocation policy. However, a large portion of the allocated radio spectrum is underutilized. Conversely, the rapid development of ubiquitous wireless technologies increases the demand for radio spectrum. Cognitive Radio (CR) methodologies have been introduced as a promising approach in detecting the white spaces, allowing the unlicensed users to use the licensed spectrum thus realizing Dynamic Spectrum Access (DSA) in an effective manner. This paper proposes a generalized framework for DSA between the licensed (primary) and unlicensed (secondary) users based on Continuous Time Markov Chain (CTMC) model. We present a spectrum access scheme in the presence of sensing errors based on CTMC which aims to attain optimum spectrum access probabilities for the secondary users. The primary user occupancy is identified by spectrum sensing algorithms and the sensing errors are captured in the form of false alarm and mis-detection. Simulation results show the effectiveness of the proposed spectrum access scheme in terms of the throughput attained by the secondary users, throughput optimization using optimum access probabilities, probability of interference with increasing number of secondary users. The efficacy of the algorithm is analyzed for both imperfect spectrum sensing and perfect spectrum sensing.

A Priority Scheme for IEEE 802.11 Wireless LAN

  • Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12B
    • /
    • pp.1996-2002
    • /
    • 2000
  • This paper investigates a priority scheme for IEEE 802.11 Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol in order to provide short access times for priority frames (e.g. time-deadline traffic) even when the overall traffic on the wireless channel is heavy. Under the compatibility constraint for the IEEE 802.11 wireless LANs, two priority systems are simulated: no priority (current IEEE 802.11 standard) for time-deadline traffics and dynamic time-deadline priority. We evaluate algorithms to improve the time-deadline traffic performance using discrete event simulation (DES)

  • PDF

Dynamic Resource Adjustment for Coexistence of LAA and Wi-Fi in 5 GHz Unlicensed Bands

  • Choi, Jihoon;Kim, Eunkyung;Chang, Sungcheol
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.845-855
    • /
    • 2015
  • To enable the coexistence of Licensed Assisted Access (LAA) and Wi-Fi in 5 GHz unlicensed bands, a new channel access mechanism is proposed. Accounting for the fairness between LAA and Wi-Fi, the proposed mechanism finds the optimal transmission time ratio by adaptively adjusting the transmission durations for LAA and Wi-Fi. In addition, we propose a new analytical model for the distributed coordination function of IEEE 802.11 through some modifications of conventional analytical models for saturation and non-saturation loads. By computing the activity ratio of Wi-Fi, the proposed analytical model is able to control the time ratio between LAA and Wi-Fi, which is required for practical implementation of the proposed access mechanism. Through numerical simulations, the proposed channel access mechanism is compared with conventional methods in terms of throughput and utility.

Dynamic Resource Allocation of Random Access for MTC Devices

  • Lee, Sung-Hyung;Jung, So-Yi;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.546-557
    • /
    • 2017
  • In a long term evolution-advanced (LTE-A) system, the traffic overload of machine type communication devices is a challenge because too many devices attempt to access a base station (BS) simultaneously in a short period of time. We discuss the challenge of the gap between the theoretical maximum throughput and the actual throughput. A gap occurs when the BS cannot change the number of preambles for a random access channel (RACH) until multiple numbers of RACHs are completed. In addition, a preamble partition approach is proposed in this paper that uses two groups of preambles to reduce this gap. A performance evaluation shows that the proposed approach increases the average throughput. For 100,000 devices in a cell, the throughput is increased by 29.7% to 114.4% and 23.0% to 91.3% with uniform and Beta-distributed arrivals of devices, respectively.

Efficient Differentiated Bandwidth Allocation for QoS based Ethernet PON System (QoS 기반의 EPON 시스템에서 효율적인 차등 대역폭 할당)

  • Eom Jong-Hoon;Jung Min-Suk;Kim Sung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.156-166
    • /
    • 2005
  • Ethernet passive optical network is an economical and efficient access network that has received significant research attention in recent years. A MAC(Media Access Control) protocol of PON, the next generation access network, is based on TDMA(Time Division Multiple Access) basically. In this thesis, we addressed the problem of dynamic bandwidth allocation in QoS based Ethernet PONs. We augmented the bandwidth allocation to support QoS in a differentiated services framework. Our differentiated bandwidth guarantee allocation(DBGA) allocates effectively and fairly bandwidths among end users. Moreover, we showed that DBGA that perform weighted bandwidth allocation for high priority packets result in better performance in terms of average and maximum packet delay, as well as network throughput compared with existing dynamic bandwidth allocations. We used simulation experiments to study the performance and validate the effectiveness of the proposed bandwidth allocations.

Enhanced Dynamic Bandwidth Allocation Algorithm in Ethernet Passive Optical Networks

  • Park, Byung-Joo;Hwang, An-Kyu;Yoo, Jae-Hyoung
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.301-307
    • /
    • 2008
  • As broadband access is evolving from digital subscriber lines to optical access networks, Ethernet passive optical networks (EPONs) are considered a promising solution for next generation broadband access. The point-to-multipoint topology of EPONs requires a time-division multiple access MAC protocol for upstream transmission. In this paper, we propose a new enhanced dynamic bandwidth allocation algorithm with fairness called EFDBA for multiple services over EPONs. The proposed algorithm is composed of a fairness counter controller and a fairness system buffer in the optical line terminal. The EFDBA algorithm with fairness can provide increased capability and efficient resource allocation in an EPON system. In the proposed EFDBA algorithm, the optical line termination allocates bandwidth to the optical network units in proportion to the fairness weighting counter number associated with their class and queue length. The proposed algorithm provides efficient resource utilization by reducing the unused remaining bandwidth made by idle state optical network units.

  • PDF

Priority Based Medium Access Control and Load Balancing Scheme for Shared Situational Awareness in Airborne Tactical Data Link (공중 전술 데이터링크에서 상황인식 공유를 위한 우선순위 기반 매체접속제어와 부하분산 기법)

  • Yang, Kyeongseok;Baek, Hoki;Park, Kyungmi;Lim, Jaesung;Park, Ji Hyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1210-1220
    • /
    • 2016
  • As modern warfare has changed into network centered, the ability to share situational awareness among allies become a core competency for performing operational missions. In an airborne environment, it uses a tactical data link such as Link-16 for shared situational awareness. There exist problems when it shares situational awareness over the existing data link that can not allocate slots dynamically or that can not change the number of a slot to be allocated. In addition, there was a problem that can not share this failure so that failed to improves situation awareness because of finite time slot resources. In this paper, we accommodate dynamic slot allocation and changes of slot allocation with mixed structure of TDMA (time division multiple access) and random access. We propose a technique that can be used when available slots are exhausted, and a load balancing method to prevent slot allocation delay when slot requesting or message sending is concentrated on a single subframe.

COGNITIVE RADIO SPECTRUM ACCESS WITH CHANNEL PARTITIONING FOR SECONDARY HANDOVER CALLS

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.211-217
    • /
    • 2015
  • A dynamic spectrum access scheme with channel partitioning for secondary handover calls in cognitive radio networks is proposed to reduce forced termination probability due to spectrum handover failure. A continuous-time Markov chain method for evaluating its performance such as blocking probability, forced termination probability, and throughput is presented. Numerical and simulation results are provided to demonstrate the effectiveness of the proposed scheme with channel partitioning.

User Dynamic Access Control Mechanism Using Smart Contracts in Blockchain Environment (블록체인 환경에서 스마트 컨트랙트를 활용한 사용자 동적 접근제어 메커니즘)

  • Cho, Do-Eun
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.46-57
    • /
    • 2021
  • Recently, research has been actively conducted to utilize blockchain technology in various fields. In particular, blockchain-based smart contracts are applied to various automation systems that require reliability as they have the characteristics of recording data in a distributed ledger environment to verify the integrity and validity of data. However, blockchain does not provide data access control and information security because data is shared among network participants. In this paper, we propose a user dynamic access control mechanism utilizing smart contracts in blockchain environments. The proposed mechanism identifies the user's contextual information when accessing data, allocating the user's role and dynamically controlling the data access range. This can increase the security of the system and the efficiency of data management by granting data access dynamically at the time of user authentication, rather than providing the same services in roles assigned to each user group of the network system. The proposed mechanism is expected to provide flexible authentication capabilities through dynamic data access control by users to enhance the security of data stored within blockchain networks.

MAC Protocol for Multimedia Services in Wireless ATM Networks based on TDMA/TDD (TDMA/TDD 기반 무선 ATM망에서 멀티미디어 서비스를 위한 MAC 프로토콜)

  • 임인택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.899-906
    • /
    • 2003
  • In this paper, a channel access control algorithm and a slot allocation algorithm are proposed as MAC protocol for multimedia services in TDMA/TDD-based wireless ATM networks. In the proposed protocol, VBR terminals that require real-time services transmit a reservation request through a random access minislot. VBR terminals, which are successfully transmitted the reservation request, transmits the dynamic parameters through a dynamic parameter minislot without contention. On the other hand, ABR terminals transmit a reservation request with contention basis whenever a non-real-time traffic burst is generated. Based on the received dynamic parameters and the number of requested slots, the base station scheduler allocates a dynamic parameter minislot as well as uplink data slots into VBR terminals. Also the scheduler allocates uplink data slots into ABR terminals in proportion to the number of requested slots.