• Title/Summary/Keyword: Dynamic Zone

Search Result 475, Processing Time 0.025 seconds

Selective On-demand Zone Routing Protocol for Large Scale Mobile Ad-hoc Networks (대규모 Ad-hoc 네트워크 환경에서 트래픽 감소를 위한 선택적 on-demand 라우팅 기법에 관한 연구)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.443-452
    • /
    • 2012
  • In Mobile Ad-hoc Networks, previous routing protocols classified into proactive and reactive approach respectively have pros and cons under the use of applications and environment. Moreover, to integrate their advantages in case by case, hybrid approach is consistently researched, and Zone Routing Protocol (ZRP) was motivating many recent hybrid protocols. ZRP uses proactive routing to the node located within the zone defined by the specific number of hops, while it uses reactive routing to other nodes. However, in ZRP, because proactive routing is applied only within the zone defined by the number of hops, the zone is formed regardless of whether real data communication occurred frequently or not. In this paper, we propose a new hybrid routing scheme which employs the zone method but forms customized zone considering traffic load and number of hops, by a new decision method named Dynamic Zone Decision (DZD). Additionally, we analyze the performance of the proposed scheme, comparing with the previous proactive, reactive, and hybrid routings.

Response Analysis of Ground Vibration for Cutting and Embankment Transition Zone Structure (절성토 접속구조별 지반진동 응답특성)

  • Lee, Il-Wha;Yun, Won-Min;Choi, Won-Il;Hwang, In-Hwan;Hwang, Sung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3195-3200
    • /
    • 2011
  • The vibration resulting from railway operation is transmitted through the track and line structure, ground movements to adjacent buildings. As these vibration is growing, there is occurred exaggerated forces and displacements of the track and line structure and it is causing the differential settlement. It is difficult to clarify the dynamic response characteristics of trackbed because of various environmental conditions. However, track irregularity be affected by ununiformed bearing capacity and its dynamic response, study for dynamic response characteristics is required to investigate the cause of track irregularity and countermeasure. This study was intended to evaluate the numerical analysis which exam the response analysis characteristic of ground vibration by shape of cutting and embankment transition zone. The original method of analysis were have to examine variables such as directions, angles, drain conditions, linear conditions. However, In the analysis there were to consider the effect of moving loads according to directions of cutting and embankment transition zone.

  • PDF

Evaluation on Reducing Peak Cooling Load Based on Dynamic Load Model of Building Perimeter Zones (건물의 외주부 존에 대한 동적 부하모델 이용 피크냉방부하 저감효과 분석)

  • Lee, Kyoung-Ho;Brau, James E.
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, inverse building modeling was applied to building perimeter zones which have different window orientation. Two test zones of east-facing and west-facing zones in ERS(Energy Resource Station) building, which is representative of small commercial building, was used to test performance of cooling load calculation and peak cooling load reduction. The dynamic thermal load model for the east and west zone was validated using measured data for the zones and then it was used to investigate the effect of peak cooling load reduction by adjustment of indoor cooling temperature set points during on-peak time period. For the east zone, the peak load can be reduced to about 60% of the peak load for conventional control even without any precooling. For the west zone, PLR is nearly independent of the start of the on-peak period until a start time of 1pm. Furthermore, PLR has a small dependence on the precooling duration. Without any precooling, the peak cooling load can be reduced to about 35% of the peak load associated with conventional control.

Comparison of different codes using fragility analysis of a typical school building in Türkiye: Case study of Bingöl Çeltiksuyu

  • Ibrahim Baran Karasin;Mehmet Emin Oncua
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.235-247
    • /
    • 2023
  • Bingöl, a city in eastern Türkiye, is located at a very close distance to the Karlıova Region which is a junction point of the North Anatolian Fault Zone and Eastern Anatolian Fault Zone. By bilateral step over of North Anatolian Fault Zone and Eastern Anatolian Fault Zone each other there occurred NorthWest-SouthEast extended right-lateral and NorthEast-SouthWest extended left-lateral fault zones. In this paper, a typical school building located in Bingöl Çeltiksuyu was selected as the case study. Information on the school building and Bingöl Earthquake (2003) have been given in the paper. This study aimed to determine the fragility curves of the school building according to HAZUS 2022, Turkish Seismic Codes 1998, 2007 and 2018. These codes have been introduced in terms of damage limits. Incremental dynamic analysis is a parametric analysis method that has recently emerged in several different forms to estimate more thoroughly structural performance under seismic loads. Fragility analysis is commonly using to estimate the damage probability of buildings. Incremental Dynamic Analysis have performed, and 1295 Incremental Dynamic Analysis output was evaluated to obtain fragility curves. 20 different ground motion records have been selected with magnitudes between 5.6M and 7.6M. Scaling factors of these ground motions were selected between 0.1g and 2g. Comparison has been made between HAZUS 2022 and Turkish Seismic Codes 1998, 2007 and 2018 in terms of damage states and how they affected fragility curves. TSC 1998 has more conservative strictions along with TSC 2018 than TSC2007 and HAZUS moderate and extensive damage limits.

Analysis of Heating Energy in a Korean-Style Apartment Building 3 : The Effect of Room Condition Settings (한국형 아파트의 난방에너지 분석 3 :실내설정조건의 영향)

  • Park, Yoo-Won;Yoo, Ho-Seon;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.722-728
    • /
    • 2005
  • The present paper deals with heating energy estimation in Korean-style apartments, paying special attention to the effect of room condition settings. Two types of heating modes are considered: continuous single-zone and scheduled multi-zone. In the latter, zones during unoccupied periods remain unconditioned. Also analyzed are sensitivities in heating energy with respect to the air change rate and the set temperature. The energy use is estimated with TRNSYS 15, a dynamic load calculation program. Heating energy for the actual residential condition (1.0 ACH and $24^{\circ}C$) appears to be nearly the same as that for a typical design standard (1.5 ACH and $20^{\circ}C$). The air change rate affects heating energy as sensitive]y as the set temperature. For all the simulated cases, the scheduled multi-zone heating mode is more energy-efficient than the continuous single-zone. Heating energy depends appreciably on the shading factor. It is expected that considerable heating energy for apartment houses can be saved by employing a multi-zone mode along with appropriate control devices.

Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.299-312
    • /
    • 2019
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train under crosswind. Compared with the conditions of no-wind, crosswind triggers severer vibration of the dynamic system; compared with the short-pier viaduct, the high-pier viaduct has worse stability under crosswind. For these reasons, the running safety of the metro vehicle traveling on a high-pier viaduct under crosswind is analyzed to ensure the safe operation in metro lines in mountain cities. In this paper, a dynamic model of the metro vehicle-track-bridge system under crosswind is established, in which crosswind loads model considering the condition of wind zone are built. After that, the evaluation indices and the calculation parameters have been selected, moreover, the basic characteristics of the dynamic system with high-pier under crosswind are analyzed. On this basis, the response varies with vehicle speed and wind speed are calculated, then the corresponding safety zone is determined. The results indicate that, crosswind triggers drastic vibration to the metro vehicle and high-pier viaduct, which in turn causes running instability of the vehicle. The corresponding safety zone for metro vehicle traveling on the high-pier is proposed, and the metro traffic on the high-pier bridge under crosswind should not exceed the corresponding limited vehicle speed to ensure the running safety.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Surf-Zone Using LES and Dynamic Smagorinsky Turbulence Model (LES와 Dynamic Smagorinsky 난류모형을 이용한 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2020
  • Natural shoreline repeats its re-treatment and advance in response to the endlessly varying sea-conditions, and once severely eroded under stormy weather conditions, natural beaches are gradually recovered via a boundary layer streaming when swells are prevailing after storms cease. Our understanding of the boundary layer streaming over surf-zone often falls short despite its great engineering value, and here it should be noted that the most sediments available along the shore are supplied over the surf-zone. In this rationale, numerical simulation was implemented to investigate the hydraulic characteristics of boundary layer streaming over the surf zone in this study. In doing so, comprehensive numerical models made of Spatially filtered Navier-Stokes Eq., LES (Large Eddy Simulation), Dynamic Smagorinsky turbulence closure were used, and the effects of turbulence closure such as Dynamic Smagorinsky in LES and k-ε on the numerically simulated flow field were also investigated. Numerical results show that due to the intrinsic limits of k-ε turbulence model, numerically simulated flow velocity near the bottom based on k-ε model and wall function are over-predicted than the one using Dynamic Smagorinsky in LES. It is also shown that flow velocities near the bottom are faster than the one above the bottom which are relatively free from the presence of the bottom, complying the typical boundary layer streaming by Longuet-Higgins (1957), the spatial scope where boundary layer streaming are occurring is extended well into the surf zone as incoming waves are getting longer. These tendencies are plausible considering that it is the bottom friction that triggers a boundary layer streaming, and longer waves start to feel the bottom much faster than shorter waves.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

A simple panel zone model for linear analysis of steel moment frames

  • Saffari, Hamed;Morshedi, Esmaeil
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.579-598
    • /
    • 2020
  • Consideration of the panel zone (PZ) deformations in the analysis of steel moment frames (SMFs) has a substantial effect on structural response. One way to include the PZ effect on the structural response is Krawinkler's PZ model, which is one of the best and conventional models. However, modeling of Krawinkler's PZ model has its complexity, and finding an alternative procedure for PZ modeling is of interest. In this study, an efficient model is proposed to simplify Krawinkler's PZ model into an Adjusted Rigid-End Zone (AREZ). In this way, the rigid-end-zone dimensions of the beam and column elements are defined through an appropriate rigid-end-zone factor. The dimensions of this region depend on the PZ stiffness, beam(s) and columns' specifications, and connection joint configuration. Thus, to obtain a relationship for the AREZ model, which yields the dimensions of the rigid-end zone, the story drift of an SMF with Krawinkler's PZ model is equalized with the story drift of the same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs ranging from 3- to 30-story representing low- to high-rise buildings are examined through linear static and dynamic time history analysis. Furthermore, non-linear dynamic analyses of three SMFs conducted to validate the degree of accuracy of the proposed model in the non-linear analysis of SMFs. Analytical results show that there is considerable conformity between inter-story drift ratio (IDR) results of the SMFs with Krawinkler's PZ model and those of the centerline SMFs with AREZ.

Dynamic Viewing-zone Switching for a Binocular Holographic Head-up Display with Low Interpupil Crosstalk and an Extended Eye-motion Box: Design Principles and Numerical Simulations

  • Soobin, Kim;Sehwan, Na;Wonwoo, Choi;Hwi, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.54-64
    • /
    • 2023
  • This paper proposes dynamic viewing-zone switching for a binocular holographic three-dimensional display with low interpupil crosstalk and an extended eye-motion box. The optimal pupil geometry for reducing interpupil crosstalk is designed. It is shown that the eye-motion box can be extended by exploiting signal replication in the higher-order viewing zone. Design principles and numerical simulations for verification of the binocular holographic head-up display are presented.