• 제목/요약/키워드: Dynamic Yield Stress

검색결과 144건 처리시간 0.019초

미세동작제어를 위한 자기유변유체 구동기의 동적 특성 (Dynamic Characteristics of Magneto-rheological Fluid Actuator for Micro-motion Control)

  • 김평화;한철희;칼루반 수레쉬;박춘용;신철수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.511-517
    • /
    • 2016
  • This paper presents dynamic characteristics of a new actuator using magneto-rheological(MR) fluid between two electrode type coils. The concept of the actuator is to strengthen the force due to the magnetic field produced by the electrode-coil for MR fluid. The amount and direction of current input to the electrode-coils decide the characteristics of contraction-mode and extension-mode. For achieving the required actuating displacement and actuating force, the yield stress of the MR fluid between two electrode-coils is precisely changed by the input current. In this work, the MR fluid is operated in squeeze mode. The experimental results shown in this paper depict that it can be applied in the micro-level displacement and vibration control system.

반용융 압출에 의한 A7075 합금의 등방성 제어 (Isotropy Control of 7075 Al Wrought Alloy by Thixoextrusion)

  • 윤영옥;김세광
    • 한국주조공학회지
    • /
    • 제30권6호
    • /
    • pp.210-216
    • /
    • 2010
  • The aim of this study is to characterize a thixoextruded 7075 Al wrought alloy bar in terms of its isotropic behavior through the optical microscope, mechanical test and electron back scattered diffraction. It is also discussed of the extrudability improvement for 7075 Al wrought alloy by thixoextrusion, with emphasis on controlling thixoextrusion parameters. Hot extrusion shows that the maximum extrusion pressure depends on their characteristics in terms of flow stress and hot workability. In the contrary, thixoextrusion demonstrates that the maximum extrusion pressure is almost uniform regardless of the experimental parameters, such as initial ram speed, die bearing length and thixoextrusion temperature. The hot extruded microstructures become elongated to extrusion direction, while the thixoextruded microstructures are isotropic and homogeneously distributed due to the existence of liquid phase between solid grains during the process. The grain refinement due to dynamic recrystallization during thixoextrusion has been also occurred. Subsequent recrystallization would lead to the strengthening of mechanical properties, as observed in the study. The important point is that the values of tensile, yield strength and elongation of the thixoextruded bar without plastic deformation are similar to those of the hot extruded bar with severe plastic deformation.

OUT-OF-PILE MECHANICAL PERFORMANCE AND MICROSTRUCTURE OF RECRYSTALLIZED ZR-1.5 NB-O-S ALLOYS

  • Ko, S.;Lee, J.M.;Hong, S.I.
    • Nuclear Engineering and Technology
    • /
    • 제43권5호
    • /
    • pp.421-428
    • /
    • 2011
  • The out-of-pile mechanical performance and microstructure of recrystallized Zr-1.5 Nb-S alloy was investigated. The strength of the recrystallized Zr-1.5Nb-O-S alloys was observed to increase with the addition of sulfur over a wide temperature range, from room temperature up to $300^{\circ}C$. A yield drop and stress serrations due to dynamic strain were observed at room temperature and $300^{\circ}C$. Wavy and curved dislocations and loosely knit tangles were observed after strained to 0.07 at room temperature, suggesting that cross slip is easier. At $300^{\circ}C$, however, dislocations were observed to be straight and aligned along the slip plane, suggesting that cross slip is rather difficult. At $300^{\circ}C$, oxygen atoms are likely to exert a drag force on moving dislocations, intensifying the dynamic strain aging effect. Oxygen atoms segregated at partial dislocations of a screw dislocation with the edge component may hinder the cross slip, resulting in the rather straight dislocations distributed on the major slip planes. Recrystallized Zr-Nb-S alloys exhibited ductile fracture surfaces, supporting the beneficial effect of sulfur in zirconium alloys. Oxidation resistance in air was also found to be improved with the addition of sulfur in Zr-1.5 Nb-O alloys.

429EM 스테인리스강의 고온 저주기 피로 거동 (Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature)

  • 이금오;윤삼손;홍성구;김봉수;이순복
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Monte Carlo Simulation of MR Damper Landing Gear Taxiing Mode under Nonstationary Random Excitation

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.10-17
    • /
    • 2020
  • When an aircraft is taxiing, excitation force is applied according to the shape of the road surface. The sprung mass acceleration caused by the excitation of the road surface negatively affects the feeling of boarding. This paper addresses the verification process of the semi-active control method applied to improve the feeling of boarding. The Magneto-Rheological damper landing gear model is employed alongside the control method. It is a Oleo-Pneumatic damper filled with a fluid having the characteristics of increasing yield stress when subjected to a magnetic field. The control method involves verifying Skyhook Control Type2 developed by Skyhook control. The Sinozuka white noise model that considers runway characteristics was employed for the road surface in the simulation. The runway road surface obtained through this model has stochastic characteristics, so the dynamic characteristics were analyzed by applying Monte-Carlo simulation. A dynamic analysis was conducted by co-simulating the landing gear model made by RecurDyn and the control method designed by Simulink. Simulation results show that the Skyhook Control Type2 method has the best control effect in the low speed range compared to the passive type (without control) and skyhook control.

A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.727-741
    • /
    • 2014
  • The functionally graded beam (FGB) is investigated in this study on both dynamic and static loading in case of resting on a soil medium rather than on the usual Winkler-Pasternak elastic foundation. The powerful ABAQUS software was used to model the problem applying finite element method. In the present study, two different soil models are taken into account. In the first model, the soil is assumed to be an elastic plane stress medium. In the second soil model, the Drucker-Prager yield criterion, which is one of the most well-known elastic-perfectly plastic constitutive models, is used for modelling the soil medium. The results are shown to evaluate the effects of the different soil models, stiffness values of the elastic soil medium on the normal and shear stress and free vibration properties. A comparison was made to those from the existing literature. Numerical results show that considering real soil as a continuum space affects the results of the bending and the modal properties significantly.

Performance Evaluation of Seismic Stopper using Structural Analysis and AC156 Test Method

  • Ryu, Hyun-su
    • 해양환경안전학회지
    • /
    • 제26권3호
    • /
    • pp.277-285
    • /
    • 2020
  • Recently, studies have been actively conducted on seismic design and improvement of the seismic performance of bridges, buildings, factories, and plants. In particular, heavy items that are being manufactured or waiting to be shipped from factories (such as generators, engines, and boilers) must be equipped with seismic stoppers to prevent them from moving or falling during an earthquake. Seismic stoppers should be suitably determined by the size and weight of these heavy items; however, they have no general design standard. In this study, structural analyses and seismic tests were conducted to evaluate the performance of newly designed seismic stoppers. Structural analysis was performed on three stopper models to estimate the external load at which the yield stress of the material was not exceeded. Based on the analysis results, a seismic test of the stopper was carried out in accordance with the AC156 test method. Finally, product specifications for all three seismic stopper models were determined and their static/dynamic load performance was evaluated.

ER 밸브-실린더 시스템의 위치 제어 (Position Control of an ER Valve-Cylinder System)

  • 이효정;정재민;박재석;최승복;정재천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.402-405
    • /
    • 1993
  • This paper presents design.dynamic modeling and control issues of a novel type of an ER valve-cylinder system incorporating with an electro-rheological(ER) fluid. The yield stress of the ER fluid to be employed to the proposed system is evaluated as a function of applied electric fields. The design and manufacturing process of the ER valve which features fast system response and simple mechanism are undertaken on the basis of model parameters. The governing equation for the hydraulic and pneumatic model is constructed by incorporation with the field-dependent Bingham behavior of the ER fluid. An effective neuro controller is proposed to realize an accurate position control.

  • PDF

지능형 완충기의 특성 해석 (Performance Analysis of Smart Impact Damper)

  • 이덕영;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.323-327
    • /
    • 2001
  • Electrorheological(ER) and magnetorheological(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. Controllable fluids such as ER and MR fluids have received considerable attention as several components of engineering devices. One of them is a smart impact damper using ER/MR fluids. Impact damper system can be used in the joint mechanism of railroad vehicle, protection equipment of elevator's drop, and launch equipment of aircraft. This paper presents the results of an analytical study of the performance of a smart impact damper to suppress vibration during impact excitation. The damping capabilities of MR impact damper for variable applied current are analyzed using Bingham model under sudden impact load.

  • PDF

ER브레이크 작동기를 이용한 능동 장력 제어 (Active Tension Control Using an ER Brake Actuator)

  • Park, S.B.;Kim, G.W.;Cheong, C.C.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.102-111
    • /
    • 1996
  • This paper presents a proof-of-concept investigation on an active tension control using an ER (electro-rheological) brake actuator. Firstly, an ERF (electro-rheological fluid) which has an inherent reversible feature from Newtonian fluid to Bingham fluid upon applying an electric field is composed, and its property is tested to obtain intrinsic parameters of the Bingham model. An appropriate size of the ER brake is manufactured on the basis of the Bingham model, and dynamic characteristics of the brake are experimentally identified. After formulating a governing equation of motion of the tension control system, a sliding mode controller is designed to achieve a certain desired level of tension. Both simulation and experimental works are undertaken in order to demonstrate the efficiency and feasibility of the proposed active tension control method.

  • PDF