• Title/Summary/Keyword: Dynamic X-ray Imaging Sensor

Search Result 4, Processing Time 0.021 seconds

duoPIXTM X-ray Imaging Sensor Composing of Multiple Thin Film Transistors in a Pixel for Digital X-ray Detector (픽셀내 다수의 박막트랜지스터로 구성된 듀오픽스TM 엑스선 영상센서 제작)

  • Seung Ik, Jun;Bong Goo, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.969-974
    • /
    • 2022
  • In order to maximize dynamic range and to minimize image lag in digital X-ray imaging, diminishing residual parasitic capacitance in photodiode in pixels is critically necessary. These requirements are more specifically requested in dynamic X-ray imaging with high frame rate and low image lag for industrial 2D/3D automated X-ray inspection and medical CT imaging. This study proposes duoPIXTM X-ray imaging sensor for the first time that is composed of reset thin film transistor, readout thin film transistor and photodiode in a pixel. To verify duoPIXTM X-ray imaging sensor, designing duoPIXTM pixel and imaging sensor was executed first then X-ray imaging sensor with 105 ㎛ pixel pitch, 347 mm × 430 mm imaging area and 3300 × 4096 pixels (13.5M pixels) was fabricated and evaluated by using module tester and image viewer specifically for duoPIXTM imaging sensor.

Evaluation of Dynamic X-ray Imaging Sensor and Detector Composing of Multiple In-Ga-Zn-O Thin Film Transistors in a Pixel (픽셀내 다수의 산화물 박막트랜지스터로 구성된 동영상 엑스레이 영상센서와 디텍터에 대한 평가)

  • Seung Ik Jun;Bong Goo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2023
  • In order to satisfy the requirements of dynamic X-ray imaging with high frame rate and low image lag, minimizing parasitic capacitance in photodiode and overlapped electrodes in pixels is critically required. This study presents duoPIXTM dynamic X-ray imaging sensor composing of readout thin film transistor, reset thin film transistor and photodiode in a pixel. Furthermore, dynamic X-ray detector using duoPIXTM imaging sensor was manufactured and evaluated its X-ray imaging performances such as frame rate, sensitivity, noise, MTF and image lag. duoPIXTM dynamic X-ray detector has 150 × 150 mm2 imaging area, 73 um pixel pitch, 2048 × 2048 matrix resolution(4.2M pixels) and maximum 50 frames per second. By means of comparison with conventional dynamic X-ray detector, duoPIXTM dynamic X-ray detector showed overall better performances than conventional dynamic X-ray detector as shown in the previous study.

Radiation Resistance Evaluation of Thin Film Transistors (박막트랜지스터의 방사선 내구성 평가)

  • Seung Ik Jun;Bong Goo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.625-631
    • /
    • 2023
  • The important requirement of industrial dynamic X-ray detector operating under high tube voltage up to 450 kVp for 24 hours and 7 days is to obtain significantly high radiation resistance. This study presents the radiation resistance characteristics of various thin film transistors (TFTs) with a-Si, poly-Si and IGZO semiconducting layers. IGZO TFT offering dozens of times higher field effect mobility than a-Si TFT was processed with highly hydrogenated plasma in between IGZO semiconducting layer and inter-layered dielectric. The hydrogenated IGZO TFT showed most sustainable radiation resistance up to 10,000Gy accumulated, thus, concluded that it is a sole switching device in X-ray imaging sensor offering dynamic X-ray imaging at high frame rate under extremely severe radiation environment such as automated X-ray inspection.

Settling time of dental x-ray tube head after positioning (치과용 X-선 관구의 조정시간)

  • Yoon Suk-Ja;Kang Byung-Cheol;Wang Se-Myung;Koh Chang-Sung
    • Imaging Science in Dentistry
    • /
    • v.32 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • Purpose: The aim of this study was to introduce a method of obtaining the oscillation graphs of the dental x-ray tube heads relative to time using an accelerometer. Materials and Methods: An Accelerometer, Piezotron type 8704B25 (Kistler Instrument Co., Amherst, NY, USA) was utilized to measure the horizontal oscillation of the x-ray tube head immediately after positioning the tube head for an intraoral radiograph. The signal from the sensor was transferred to a dynamic signal analyzer, which displayed the magnitude of the acceleration on the Y-axis and time lapse on the X -axis. The horizontal oscillation of the tube head was measured relative to time, and the settling time was also determined on the basis of the acceleration graphs for 6 wall type, 5 floor-fixed type, and 4 mobile type dental x-ray machines. Results : The oscillation graphs showed that tube head movement decreased rapidly over time. The settling time varied with x-ray machine types. Wall-type x-ray machines had a settling time of up to 6 seconds, 5 seconds for fixed floor-types, and 1 I seconds for the mobile-types. Conclusion: Using an accelerometer, we obtained the oscillation graphs of the dental x-ray tube head relative to time. The oscillation graph with time can guide the operator to decide upon the optimum exposure moment after x-ray tube head positioning for better radiographic resolution.

  • PDF