• Title/Summary/Keyword: Dynamic Threat

Search Result 80, Processing Time 0.03 seconds

The Threat List Acquisition Method in an Engagement Area using the Support Vector Machines (SVM을 이용한 교전영역 내 위협목록 획득방법)

  • Koh, Hyeseung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.236-243
    • /
    • 2016
  • This paper presents a threat list acquisition method in an engagement area using the support vector machines (SVM). The proposed method consists of track creation, track estimation, track feature extraction, and threat list classification. To classify the threat track robustly, dynamic track estimation and pattern recognition algorithms are used. Dynamic tracks are estimated accurately by approximating a track movement using position, velocity and time. After track estimation, track features are extracted from the track information, and used to classify threat list. Experimental results showed that the threat list acquisition method in the engagement area achieved about 95 % accuracy rate for whole test tracks when using the SVM classifier. In case of improving the real-time process through further studies, it can be expected to apply the fire control systems.

Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles

  • Kim, Yun-Geun;Chang, Woohyuk;Kim, Kwangmin;Oh, Taegeun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by external threats. We implemented the proposed software in real mission computer hardware and evaluated the performance of situational awareness toward dynamic radar threats in flight simulations.

Dynamic Dependability Level Switching Strategies by Utilizing Threat Predictions

  • Lim, Sung-Hwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • A System can be more Dependable from some types of Threats if the Dependability Level Against the Threat on the System is Increased. However, The Dependability-performance Tradeoff should be Considered because the Increased Dependability may Degrade the Performance of the System. Therefore, it is Efficient to Temporally Increase the Dependability Level to High only when an Threat is Predicted on the System in a Short time while Maintaining the Level in Low or mid in Normal Situations. In this Paper, we Present a Threat Prevention Strategy for a Networked Node by Dynamically Changing the Dependability Level According to the Threat Situation on its Logically/physically Neighboring Nodes. As case Studies, we Employ our Strategy to an Internet Server Against TCP SYN Flood Attacks and to a Checkpoint and Rollback System Against Transient Faults. Our Performance Analysis Shows that our Strategy can Effectively Relieve the Damage of the Failure without Serious Performance Degradation.

Doing More by Seeing Less: Gritty Applicants are Less Sensitive to Facial Threat Cues

  • Shin, Ji-eun;Lee, Hyeonju
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • People differ greatly in their capacity to persist in the face of challenges. Despite significant research, relatively little is known about cognitive factors that might be involved in perseverance. Building upon human threat-management mechanism, we predicted that perseverant people would be characterized by reduced sensitivity (i.e., longer detection latency) to threat cues. Our data from 5,898 job applicants showed that highly perseverant individuals required more time to correctly identify anger in faces, regardless of stimulus type (dynamic or static computer-morphed faces). Such individual differences were not observed in response to other facial expressions (happiness, sadness), and the effect was independent of gender, dispositional anxiety, or conscientiousness. Discussions were centered on the potential role of threat sensitivity in effortful pursuit of goals.

Automatic Generation of MAEC and STIX Standards for Android Malware Threat Intelligence

  • Park, Jungsoo;Nguyen Vu, Long;Bencivengo, George;Jung, Souhwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3420-3436
    • /
    • 2020
  • Due to the increasing number of malicious software (also known as malware), methods for sharing threat information are being studied by various organizations. The Malware Attribute Enumeration and Characterization (MAEC) format of malware is created by analysts, converted to Structured Threat Information Expression (STIX), and distributed by using Trusted Automated eXchange of Indicator Information (TAXII) protocol. Currently, when sharing malware analysis results, analysts have to manually input them into MAEC. Not many analysis results are shared publicly. In this paper, we propose an automated MAEC conversion technique for sharing analysis results of malicious Android applications. Upon continuous research and study of various static and dynamic analysis techniques of Android Applications, we developed a conversion tool by classifying parts that can be converted automatically through MAEC standard analysis, and parts that can be entered manually by analysts. Also using MAEC-to-STIX conversion, we have discovered that the MAEC file can be converted into STIX. Although other researches have been conducted on automatic conversion techniques of MAEC, they were limited to Windows and Linux only. In further verification of the conversion rate, we confirmed that analysts could improve the efficiency of analysis and establish a faster sharing system to cope with various Android malware using our proposed technique.

A Dynamic Approach to Extract the Original Semantics and Structure of VM-based Obfuscated Binary Executables (가상 머신 기반으로 난독화된 실행파일의 구조 및 원본의미 추출 동적 방법)

  • Lee, Sungho;Han, Taisook
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.859-869
    • /
    • 2014
  • In recent years, the obfuscation techniques are commonly exploited to protect malwares, so obfuscated malwares have become a big threat. Especially, it is extremely hard to analyze virtualization-obfuscated malwares based on unusual virtual machines, because the original program is hidden by the virtual machine as well as its semantics is mixed with the semantics of the virtual machine. To confront this threat, we suggest a framework to analyze virtualization-obfuscated programs based on the dynamic analysis. First, we extract the dynamic execution trace of the virtualization-obfuscated executables. Second, we analyze the traces by translating machine instruction sequences into the intermediate representation and extract the virtual machine architecture by constructing dynamic context flow graphs. Finally, we extract abstract semantics of the original program using the extracted virtual machine architecture. In this paper, we propose a method to extract the information of the original program from a virtualization-obfuscated program by some commercial obfuscation tools. We expect that our tool can be used to understand virtualization-obfuscated programs and integrate other program analysis techniques so that it can be applied to analysis of the semantics of original programs using the abstract semantics.

Design and Implementation of Pinpad using Secure Technology from Shoulder Surfing Attack (비밀번호 훔쳐보기로부터 안전한 기술을 내장시킨 비밀번호 입력기의 설계 및 구현)

  • Kang, Moon-Seol;Kim, Young-Il
    • The KIPS Transactions:PartD
    • /
    • v.17D no.2
    • /
    • pp.167-174
    • /
    • 2010
  • When entering the PIN(personal identification number), the greatest security threat is shoulder surfing attack. Shoulder surfing attack is watching the PIN being entered from over the shoulder to obtain the number, and it is the most common and at the same time the most powerful security threat of stealing the PIN. In this paper, a psychology based PINpad technology referred to as DAS(Dynamic Authentication System) that safeguards from shoulder surfing attack was proposed. Also, safety of the proposed DAS from shoulder surfing attack was tested and verified through intuitive viewpoint, shoulder surfing test, and theoretical analysis. Then, a PINpad with an internal DAS that was certified for its safety from shoulder surfing attack was designed and produced. Because the designed PINpad significantly decreases the chances for shoulder surfing attackers being able to steal the PIN when compared to the ordinary PINpad, it was determined to be suitable for use at ATM(automated teller machine)s operated by banks and therefore has been introduced and is being used by many financial institutions.

An Architecture of a Dynamic Cyber Attack Tree: Attributes Approach (능동적인 사이버 공격 트리 설계: 애트리뷰트 접근)

  • Eom, Jung-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In this paper, we presented a dynamic cyber attack tree which can describe an attack scenario flexibly for an active cyber attack model could be detected complex and transformed attack method. An attack tree provides a formal and methodical route of describing the security safeguard on varying attacks against network system. The existent attack tree can describe attack scenario as using vertex, edge and composition. But an attack tree has the limitations to express complex and new attack due to the restriction of attack tree's attributes. We solved the limitations of the existent attack tree as adding an threat occurrence probability and 2 components of composition in the attributes. Firstly, we improved the flexibility to describe complex and transformed attack method, and reduced the ambiguity of attack sequence, as reinforcing composition. And we can identify the risk level of attack at each attack phase from child node to parent node as adding an threat occurrence probability.

Effect of excitation intensity on slope stability assessed by a simplified approach

  • Korzec, Aleksandra;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.601-612
    • /
    • 2021
  • The paper concerns the selection of a design accelerograms used for the slope stability assessment under earthquake excitation. The aim is to experimentally verify the Arias Intensity as an indicator of the excitation threat to the slope stability. A simple dynamic system consisting of a rigid block on a rigid inclined plane subjected to horizontal excitation is adopted as a slope model. Strong ground motions recorded during earthquakes are reproduced on a shaking table. The permanent displacement of the block serves as a slope stability indicator. Original research stand allows us to analyse not only the relative displacement but also the acceleration time history of the block. The experiments demonstrate that the Arias Intensity of the accelerogram is a good indicator of excitation threat to the stability of the slope. The numerical analyses conducted using the experimentally verified extended Newmark's method indicate that both the Arias Intensity and the peak velocity of the excitation are good indicators of the impact of dynamic excitation on the dam's stability. The selection can be refined using complementary information, which is the dominant frequency and duration of the strong motion phase of the excitation, respectively.

Structural Shape Optimization under Static Loads Transformed from Dynamic Loads (동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계)

  • Park, Ki-Jong;Lee, Jong-Nam;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1262-1269
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

  • PDF