• Title/Summary/Keyword: Dynamic Tension

Search Result 547, Processing Time 0.028 seconds

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Dynamic analysis of ROV cable considering the coupling motion of ROV cable systems

  • Cho, Kyu Nam;Song, Ha Cheol;Hong, Do Chun
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.429-440
    • /
    • 2004
  • Remotely Operated Vehicle of 6000-meters is a new conceptual equipment made to replace the manned systems for investigating the deep-sea environment, and all of the ROV systems in operational condition strongly depend on the connecting cables. In this point of view dynamics of the ROV cable system is very important for operational and safety aspects as a cable generally encounters great tension. Researches have been executed on this problem, and most of papers have been mainly focused on the operational condition of ROV system in deep sea. This paper presents the dynamic cable response analysis during ROV launching condition rather than the operational one in order to provide the design guide of a ROV cable system in this circumstance, considering the coupling effects between cable and wave-induced ship motion. To obtain the variations of cable tensions during a ROV launching, a pre-stressed harmonic response analysis was carried out. Wave-induced tensions of the cable during ROV launching were obtained in real sea states using FE modeling, and the basic design guide of a ROV cable system was obtained.

Estimating peak wind load effects in guyed masts

  • Sparling, B.F.;Wegner, L.D.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.347-366
    • /
    • 2007
  • Guyed masts subjected to turbulent winds exhibit complex vibrations featuring many vibration modes, each of which contributes to various structural responses in differing degrees. This dynamic behaviour is further complicated by nonlinear guy cable properties. While previous studies have indicated that conventional frequency domain methods can reliably reproduce load effects within the mast, the system linearization required to perform such an analysis makes it difficult to relate these results directly to corresponding guy forces. As a result, the estimation of peak load effects arising jointly from the structural action of the mast and guys, such as leg loads produced as a result of guy reactions and mast bending moments, is uncertain. A numerical study was therefore undertaken to study peak load effects in a 295 m tall guyed mast acted on by simulated turbulent wind. Responses calculated explicitly from nonlinear time domain finite element analyses were compared with approximate methods in the frequency domain for estimating peak values of selected responses, including guy tension, mast axial loads and mast leg loads. It was found that these peak dynamic load effects could be accurately estimated from frequency domain analysis results by employing simple, slightly conservative assumptions regarding the correlation of related effects.

Dynamic Analysis of Cable-Stayed Bridge Subjected to Random Wind Forces (랜덤풍하중에 대한 사장교의 동력학적연구)

  • Hyun, Chang Hun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.59-66
    • /
    • 1984
  • The dynamic behavior of a cable-stayed bridge due to random wind forces is investigated. The effects of the steady wind, the self-excited and the buffeting forces are studied. The dynamic analysis of the structure is carried out by the frequency domain method utilizing the mode superposition. Example analysis are performed for Dolsan Bridge, which is under construction at Yeosu, Jeonnam. Aerodynamic stability of the bridge is investigated and the vertical motion of the girder as well as the tension variations of the cables is obtained.

  • PDF

Radicular Pain due to Subsidence of the Nitinol Shape Memory Loop for Stabilization after Lumbar Decompressive Laminectomy

  • Son, Byung-Chul;Kim, Deog-Ryeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.61-64
    • /
    • 2015
  • A number of dynamic stabilization systems have been used to overcome the problems associated with spinal fusion with rigid fixation recently and the demand for an ideal dynamic stabilization system is greater for younger patients with multisegment disc degeneration. Nitinol, a shape memory alloy of nickel and titanium, is flexible at low temperatures and regains its original shape when heated, and the Nitinol shape memory loop (SML) implant has been used as a posterior tension band mostly in decompressive laminectomy cases because the Nitinol implant has various characteristics such as high elasticity and a tensile force, flexibility, and biological compatibility. The reported short-term outcomes of the application of SMLs as posterior column supporters in cervical and lumbar decompressive laminectomies seem to be positive, and complications are minimal except for the rare occurrence of pullout and fracture of the SML. However, there was no report of neurological complications related to neural compression in spite of the use of the loop of SML in the epidural space. The authors report a case of delayed development of radiating pain caused by subsidence of the SML resulting epidural compression.

An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구)

  • Park, Young-Hoon;Cho, Sun-Kyu;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

A Numerical Analysis for the Dynamic Behavior of the Umbilical Cable of a Deep-sea Unmanned Underwater Vehicle (심해 무인잠수정 1차 케이블의 동적거동 수치해석)

  • Kwon, Do-Young;Park, Han-Il;Jung, Dong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.31-38
    • /
    • 2005
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The umbilical cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behavior of a marine cable. In this study, a numerical program is established based on a finite difference method. The program is appled to 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

Dynamic Deformation Behavior of Metal Matrix Composites Under Impact Loading (충격하중을 받는 금속복합재료의 동적변형거동에 관한 연구)

  • Kim, Moon-Saeng;Lee, Hyeon-Chul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1772-1782
    • /
    • 1993
  • The characteristics of metal matrix composite under dynamic tension at high strain rates up to the order of $10^3/sec$ is studied by using newly developed apparatus. The composite material processed in this research is aluminum-alumina metal matrix composites, arid fabricated by compocasting with the fiber volume fraction from 5 to 20%. The whisker and matrix material used in this paper were ${\delta}-Al_2O_3$ and Al-6061, respectively. The mechanical tests performed in this research are low and high strain rate tensile test. At low strain-rate tensile test, the modulus of elasticity and the ultimate tensile strength of the composites were improved about 77 pct. and 55 pct., respectively comparing with the unreinforced materials. At strain-rate from $10^{-3}\;to\;10^3/s$, the effect of strain-rate on the modulus, ultimate strength, flow stress is determined. Also the effect of strain rate on the modulus, ultimate tensile strength, flow stress and elongation to failures were investigated.

Hydraulic Characteristics and Dynamic Behaviors of Floating Breakwater with Vertical Plates (연직판형 부소파제의 수리학적 특성과 동적거동)

  • SOHN Byung-Kyu;YANG Yong-Su;JEONG Seong-Jae;SHIN Jong-Keon;KIM Do-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.5
    • /
    • pp.316-322
    • /
    • 2005
  • In order to develop a floating breakwater, which can efficiently control long period waves, vertical plates are attached in pontoon. Wave control and dynamic behaviors of the newly developed vertical plates type are verified from numerical analysis and hydraulic experiment. As a result, for the wave control and energy dissipation, the newly developed vertical plates type is more efficient than the conventional pontoon type. For the floating body motion, the wave transmission, depending on incident wave period, is decreased at the natural frequency. Dimensionless drift distance has similar trend of the reflection rate of wave transformation near natural frequency except maximum and minimum values. Dimensionless maximum tension is 17 percent of the weight of floating breakwater in case of the conventional pontoon type and 18 percent or 14 percent in case of the newly developed vertical plates type. Thus, it is shown that the wave control is improved by the vertical plates type. In addition, by adjusting the interval of the front and back vertical plate, we would control proper wave control.

The Design Development on the Mooring System of a Floating Barge Positioned in the Shallow Water Zone (천해역에 위치한 바지형 부유체의 계류시스템 설계)

  • Kim, Young-Bok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.364-371
    • /
    • 2015
  • This study is aimed to develop the dynamic analysis technique for a floating aquaculture in a shallow water region under the harsh sea condition. In case of the installation region to transform from a coastal area to the offshore area, the influence of sea bed with sea waves on the mooring lines was announced to be significant by other authors. In this study, the numerical tool was developed to solve dynamic behavior of the floating barge coupled with mooring lines in a shallow zone of the sea considering the influence of sea bed on the floating system.