• Title/Summary/Keyword: Dynamic Tensile Characteristics

Search Result 127, Processing Time 0.034 seconds

The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient (동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가)

  • 송준혁;박정민;채희창;강희용;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.

Dynamic tensile characteristics of SUS304L steel sheets (SUS304계열 강판의 동적인장특성)

  • Kim, J.S.;Huh, H.;Lee, J.W.;Kwon, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.360-363
    • /
    • 2007
  • This paper deals with the dynamic tensile characteristics of the steel sheets for structural members of a train. Train accidents occurs rarely but lead to many casualties and economical loss. Therefore the safety of the train becomes important during the train crash. The dynamic tensile characteristics of the steel sheets are indispensable to analyze the structural crashworthiness. Current research reports the stress-strain curves, fracture elongation and strain rate sensitivities evaluated at the various strain rates especially for SUS304L-ST and SUS304L-LT steel sheets. The results include the difference in the dynamic tensile characteristics of both rolling and transverse directions. Dynamic tensile tests were performed at the strain rates ranging from 0.003/sec to 200/sec using High Speed Material Testing Machine. The materials tested in this research shows interesting behavior at the low strain rates. The strain hardening exponent decreases remarkably while the yield strength increases.

  • PDF

Testing Equipments for the Evaluation of Dynamic Tensile characteristics and the Crashworthiness of Auto-body Members (차체용 부재의 동적 인장 특성 및 충돌 특성 평가를 위한 시험장비 개발)

  • Huh, H.;Kim, S.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.21-24
    • /
    • 2007
  • This paper deals with introduction of testing equipments for the evaluation of dynamic tensile characteristics of auto-body steel sheets and the crashworthiness of auto-body members. The servo-hydraulic high speed material testing machine was developed for tensile tests at the intermediate strain rate to obtain the tensile material properties at the strain rate under 500/sec. The split Hopkinson bar apparatus using the elastic wave was developed for dynamic material characteristics at the high strain rate ranged from 1,000 to 10,000/sec. The servo-hydraulic high speed crash testing machine is the equipment for the evaluation of the collapse load and crashworthiness of auto-body members. High speed carrying truck crashes to specimen with the maximum velocity of 17 m/sec.

  • PDF

Dynamic Tensile Characteristics of the High Strength Steel Sheet for an Auto-body (차체용 고장력 강판의 동적 인장 특성 평가)

  • Kim, Seok-Bong;Huh, Hoon;Shin, Chirl-Soo;Kim, Hyo-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.171-176
    • /
    • 2007
  • An important challenging issue in the automotive industry is the light-weight, safe design and enhancement of crash response of an auto-body structures. These objectives lead to increasing adoption of high strength steel sheet for inner and outer auto-body members. This paper evaluates the dynamic tensile characteristics of high strength steel sheets, HS45R, TRIP60, DP60 and DP100, along the rolling direction and transverse direction. Static tensile tests were carried out at the strain rate of 0.003/sec using the static tensile machine (Instron 5583). Dynamic tensile tests were carried out at the range of strain rate from 0.1/sec to 200/sec using a high speed material testing machine developed. The tensile tests acquire stress-strain relation and strain rate sensitivity of each material. The experimental results show two important aspects for high strength steels: the flow stress increases as strain rate increases; the strain hardening decreases as the tensile stress increases. The experiments also produce interesting results that the elongation does not decrease even when the strain rate increases.

EVALUATION OF DYNAMIC TENSILE CHARACTERISTICS OF POLYPROPYLENE WITH TEMPERATURE VARIATION

  • Kim, J.S.;Huh, H.;Lee, K.W.;Ha, D.Y.;Yeo, T.J.;Park, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.571-577
    • /
    • 2006
  • This paper deals with dynamic tensile characteristics for the polypropylene used in an IP(Instrument Panel). The polypropylene is adopted in the dash board of a car, especially PAB(Passenger Air Bag) module. Its dynamic tensile characteristics are important because the PAB module undergoes high speed deformation during the airbag expansion. Since the operating temperature of a car varies from $-40^{\circ}C$ to $90^{\circ}C$ according to the specification, the dynamic tensile tests are performed at a low temperature($-30^{\circ}C$), the room temperature($21^{\circ}C$) and a high temperature($85^{\circ}C$). The tensile tests are carried out at strain rates of six intervals ranged from 0.001/sec to 100/sec in order to obtain the strain rate sensitivity. The flow stress decreases at the high temperature while the strain rate sensitivity increases. Tensile tests of polymers are rather tricky since polymer does not elongate uniformly right after the onset of yielding unlike the conventional steel. A new method is suggested to obtain the stress-strain curve accurately. A true stress-strain curve was estimated from modification of the nominal stress-strain curves obtained from the experiment. The modification was carried out with the help of an optimization scheme accompanied with finite element analysis of the tensile test with a special specimen. The optimization method provided excellent true stress-strain curves by enforcing the load response coincident with the experimental result. The material properties obtained from this paper will be useful to simulate the airbag expansion at the normal and harsh operating conditions.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

Effect of Microstructure on Dynamic Tensile Characteristics of SPRC440 Sheet (SPRC440 강판재의 미세조직 구성이 동적 인장 특성에 미치는 영향)

  • Lee, S.H.;Rhyim, Y.M.;Lee, J.H.;Kim, I.B.;Kim, Y.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.309-315
    • /
    • 2011
  • The behavior of metallic materials at high strain rates shows different characteristics from those in quasi-static deformation. Therefore, the strain rate should be considered when simulating crash events. The objective of this paper is to evaluate the dynamic tensile characteristics of SPRC440 as a function of the volume fraction of phases. As-received SPRC440 is composed of ferrite and pearlite phases. However, ferrite and martensite phases were observed after heat treatment at $730^{\circ}C$ and $780^{\circ}C$ for 5 minutes, as expected by calculations based on the curves from dilatometry tests. High cross-head speed tensile tests were performed to acquire strain-stress curves at various strain rates ranging from 0.001 to $300\;s^{-1}$, which are typical in real vehicle crashes. It was observed that the flow stress increases with the strain rate and this trend was more pronounced in the as-received specimens consisting of ferrite and pearlite phases. It is speculated that the dislocation density in each phase has an influence on the strain rate sensitivity.

Determination of True Stress-Strain Curves of Auto-body Plastics Using FEGM (FEGM을 이용한 자동차용 플라스틱의 진응력-변형률 선도 도출)

  • Park, C.H.;Kim, J.S.;Huh, H.;Ahn, C.N.;Choi, S.J
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.223-226
    • /
    • 2009
  • The plastics are widely utilized in the inside of vehicles. The dynamic tensile characteristics of auto-body plastics are important in a prediction of deformation mode of the plastic component which undergoes the high speed deformation during car crash. This paper is concerned with the dynamic tensile characteristics of the auto-body plastics at intermediate strain rates. Quasi-static tensile tests were carried out at the strain rate ranged from 0.001/sec to 0.01/sec using the static tensile machine(Instron 5583). Dynamic tensile tests were carried out at the strain rate ranged from 0.1/sec to 100/sec using the high speed material testing machine developed. Conventional extensometry method is no longer available for plastics, since the deformation of plastic is accompanied with localized deformation. In this paper, quasi-static and dynamic tensile tests were performed using ASTM IV standard specimens with grids and images from a high speed camera were analyzed for strain measurement. True stress-strain relations and the actual strain rates at each deformation step were obtained by processing load data and deformation images, assuming the plastics to deform uniformly in each grid.

  • PDF

Dynamic Material Test of Sinter-Forged Cu-Cr Alloy and Application to the Impact Characteristics of Vacuum Interrupter (구리-크롬 합금의 조성비에 따른 동적실험 및 진공 인터럽터 충격특성에의 적용)

  • Song, Jung-Han;Lim, Ji-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.447-452
    • /
    • 2004
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is obtained from the split Hopkinson pressure bar test. Experimental results from both quasi-static and dynamic compressive tests are interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the amount of chromium content.

  • PDF

Dynamic Deformation Behavior of Metal Matrix Composites Under Impact Loading (충격하중을 받는 금속복합재료의 동적변형거동에 관한 연구)

  • Kim, Moon-Saeng;Lee, Hyeon-Chul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1772-1782
    • /
    • 1993
  • The characteristics of metal matrix composite under dynamic tension at high strain rates up to the order of $10^3/sec$ is studied by using newly developed apparatus. The composite material processed in this research is aluminum-alumina metal matrix composites, arid fabricated by compocasting with the fiber volume fraction from 5 to 20%. The whisker and matrix material used in this paper were ${\delta}-Al_2O_3$ and Al-6061, respectively. The mechanical tests performed in this research are low and high strain rate tensile test. At low strain-rate tensile test, the modulus of elasticity and the ultimate tensile strength of the composites were improved about 77 pct. and 55 pct., respectively comparing with the unreinforced materials. At strain-rate from $10^{-3}\;to\;10^3/s$, the effect of strain-rate on the modulus, ultimate strength, flow stress is determined. Also the effect of strain rate on the modulus, ultimate tensile strength, flow stress and elongation to failures were investigated.