• Title/Summary/Keyword: Dynamic System Simulator

Search Result 347, Processing Time 0.021 seconds

System architecture and simulation strategy for dynamic process simulation (화학공정 동적모사기 개발에 있어서 시스템구조 및 전략)

  • 이강주;한경택;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.315-320
    • /
    • 1992
  • This paper presents the simulation architecture and strategy for dynamic simulation of chemical process and describes key features of developed dynamic simulation system, MOSA(Multi-Objective Simulation Architecture). A plant structure may be partioned into several strong coupling units, called cluster. If this cluster is solved simultaneously, it is possible to simulate whole plant without introducing convergence problem of tear streams. In this study, a flexible modular approach based on clusters was proposed as a promising architecture for dynamic chemical process simulator.

  • PDF

A Study on Implementation of Dynamic Safety System in Programmable Logic Controller for Pressurized Water Reactor

  • Kim, Ung-Soo;Seong, Poong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.91-96
    • /
    • 1996
  • The Dynamic Safety System (DSS) is a compute. based reactor protection system that has fail-safe nature and perform dynamic self-testing. In this paper, the implementation of DSS in PLC is presented for PWR. In order to choose adequate PLC implementation model of DSS, the reliability analysis is performed. The KO-RI unit 2 Nuclear power plant is selected as the reference plant, and the verification is carried out using the KO-RI unit 2 simulator FISA-2.

  • PDF

A Simulator for a Performance Test of HEVs (하이브리드 자동차 성능 시뮬레이터)

  • Zheng, Chun-Hua;Kim, Nam-Wook;Lee, Dae-Heung;Lim, Won-Sik;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.353-356
    • /
    • 2008
  • HEV(Hybrid Electrical Vehicle) is considered as one of the next generation vehicles. To develop the HEV, there must be a reliable simulator, by which the capacities of the power resources are tested, and the parameters of the HEV are optimized before developing the real model of the HEVs. This process can save the money for designing the HEV system and improve the system without experiments. Matlab Simulink is familiar to mechanical engineers and the program can simultaneously provide a system model and a controller in one program. Nowadays, the Simdriveline toolbox which is used for analysis a power-train system is applied to build a dynamic model for a HEV system. In this study, we make a HEV simulator with the Simdriveline toolbox and develop a controller. There are two simple strategies, applied to the controller. One strategy includes a power split ratio and a shift map which are created by user. Other strategy calculated an appropriate amount of resource's torque along specific results, and this is useful when users can't develop a fitting controller. The methodologies for configuring the simulator and its control system are presented in this paper.

  • PDF

Vehicle Running Characteristic Simulator using Induction Motor (유도전동기를 이용한 차량주행특성 시뮬레이터)

  • Byun, Yeun-Sub;Kim, Young-Chol;Mok, Jei-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1903-1914
    • /
    • 2011
  • In this paper, we propose vehicle running characteristic simulator. The developed simulator is configured by two induction motors which are directly coupled with each other. One motor is to simulate the vehicle drive and another motor is to simulate the vehicle dynamic load including running resistance, gradient resistance and adhesive characteristics between rail and wheel. The running characteristics of vehicle are modeled by numerical formulas. These are programed by software of embedded controller. Thus, it is possible to change several running characteristics during the running test freely and instantly. To evaluate the feasibility of the simulator, the experiments on slip and adhesion coefficient are performed. Additionally the adhesion control and speed control of vehicle are tested with simulator. Experimental results show that the simulator can produce the driving characteristics similar to the vehicle system.

Digital controller for turbine simulator (터빈 시뮬레이터용 수치제어기에 관한 연구)

  • Kim, Seog-Hwan;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.29-32
    • /
    • 1987
  • Hydro turbine, steam turbine and their generators can be described by one general model. To realize the turbine simulator, personal computer, D.C. motor and three phase thyristor converter have been used. In the experiments for the improvement of power system stability, that is, steady state, dynamic and transient stability, the characteristics of turbine simulator proposed by this paper have shown that of real prime mover.

  • PDF

Performance Analysis of Supercritical Coal Fired Power Plant Using gCCS Simulator

  • Tumsa, Tefera Zelalem;Mun, Tae-Young;Lee, Uendo;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.37-40
    • /
    • 2014
  • Capturing the carbon dioxide emitted from coal-fired power plants will be necessary if targeted reduction in carbon emissions is to be achieved. Modelling and simulation are the base for optimal operation and control in thermal power plant and also play an important role in energy savings. This study aims to analyze the performance of supercritical coal fired power plant through steady and dynamic simulation using a commercial software gCCS. A whole power plant has been modeled and validated with design data of 500 MWe power plant, base and part load operations of the plant were also evaluated, consequently it had been proven that the simulated result had a good agreement with actual operating data. In addition, the effect of co-firng on the plant efficiency and flue gases were investigated using gCCS simulator.

  • PDF

GASS Improvement using Diverse Communication Layers of Material and Information (정보 전달계의 분리를 통한 GASS의 개선)

  • Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.101-109
    • /
    • 2007
  • The purpose of this study is to improve ability of GASS using diverse communication layers of material and information. GASS is a dynamic system simulator developed for analyzing complex agricultural system. However, it had two difficulties which are inefficient modeling of information transmission and complicated implementation of material transmission. This paper proposes dual communication layers which consist of material and information to overcome the hardship and applies intake tower component which controls amount of irrigation using water requirement in paddy to an irrigation system model. The application focused on available information communication and correctable material communication.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Development of Embedded Transmission Simulator for the Verification of Forklift Shift Control Algorithm (지게차 변속제어 알고리즘 검증을 위한 임베디드 변속기 시뮬레이터 개발)

  • Gyuhong Jung
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.17-26
    • /
    • 2023
  • A forklift is an industrial vehicle that lifts or transports heavy objects using a hydraulically operated fork, and is equipped with an automatic transmission for the convenience of repetitive transportation, loading, and unloading work. The Transmission Control Unit (TCU) is a key component in charge of the shift control function of an automatic transmission. It consists of an electric circuit with an input/output signal interface function and firmware running on a microcontroller. To develop TCU firmware, the development process of shifting algorithm design, firmware programming, verification test, and performance improvement must be repeated. A simulator is a device that simulates a mechanical system having dynamic characteristics in real time and simulates various sensor signals installed in the system. The embedded transmission simulator is a simulator that is embedded in the TCU firmware. information related to the mechanical system that is necessary for TCU normal operation. In this study, an embedded transmission simulator applied to the originally developed forklift TCU firmware was designed and used to verify various forklift shift control algorithms.