• 제목/요약/키워드: Dynamic System Extension

검색결과 140건 처리시간 0.028초

수문학적 예측의 정확도에 따른 저수지 시스템 운영의 민감도 분석 (Sensitivity Analysis for Operation a Reservoir System to Hydrologic Forecast Accuracy)

  • 김영오
    • 한국수자원학회논문집
    • /
    • 제31권6호
    • /
    • pp.855-862
    • /
    • 1998
  • 본 연구는 수력발전을 위한 저수지 관리에 있어 예측오차의 영향을 살펴보기 위해 예측오차를 Root Mean Square Error(RMSE)로 측정하였고, 이를 Generalized Maintenance Of Variance Extension (GMOVE)기법을 통하여 변화시켜보았다.변화된 예측오차의 RMSE는 천이확률을 통하여 Bayesian Stochastic Dynamic Programming (BSDP)에 고려되어졌으며, 이 BSDP 모형을 이용하여 월별 방류량을 결정하였고 그 유용성을 평가하였다. 제시된 연구방법은 미국의 Skagit 시스템에 적용되었고, 그 결과로 Skagit 시스템의 운영은 예측오차의 RMSE에 비선형이므로 반응하므로 이 시스템의 운영을 개선하기 위해서는 현재의 수문학적 예측기법을 개선해야함을 제시하였다.

  • PDF

GMA용접 시스템의 동적 거동에 대한 해석 (Analysis of Dynamic Behavior in GMAW System)

  • 이재영;최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.41-48
    • /
    • 2000
  • Dynamic behaviors of the GMAW system are simulated using the short-circuit transfer model and the characteristic equations fir the power supply, wire system and arc. The conventional wire equation, which relates the rate change of the wire extension to the wire feed rate and melting rate, is modified to include effects of the molten drop attached at the wire tip. The modified wire equation describes behaviors of the GMAW system more precisely and provides information about the initial bridge volume for short-circuit transfer. The proposed short-circuit model predicts the variation of parameters such as the current, voltage, short-circuit frequency and time considering the effects of the surface tension and electromagnetic force due to current. The calculated results are in broad agreements with the experimental results under the argon shielding condition.

  • PDF

동적 힘 평형 모델을 이용한 GMA 용접의 용적이행 해석 (Analysis of Metal Transfer using Dynamic Force Balance Model in GMAW)

  • 최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • 제19권4호
    • /
    • pp.399-405
    • /
    • 2001
  • A dynamic force balance model is proposed in this work as an extension of the previous static force balance model to predict metal transfer in arc welding. Dynamics of a pendant drop is modeled as the second order system, which consists of the mass, spring and damper. The spring constant of a spherical drop at equilibrium is derived in the closed-form equation, and the inertia force caused by drop vibration is included in the drop detaching condition. While the inertia force is small in the low current range, it becomes larger than the gravitational force with current increase. The inertia force reaches half of the electromagnetic force at transition current, and has considerable effects on drop detachment. The proposed dynamic force balance model predicts the detaching drop size more accurately than the static force balance model.

  • PDF

Dynamic evaluation of water source safety based on fuzzy extension model

  • Ou, Bin;Gong, Aimin;He, Chunxiang;Fu, Shuyan
    • Membrane and Water Treatment
    • /
    • 제10권2호
    • /
    • pp.149-154
    • /
    • 2019
  • The information matter-element system was built to assess safety of water source. Based on the thought of multiindex fusion, fuzzy matter-element model evaluating water source behavior was constructed by matter-element transform. This model can process comprehensively hydrogeological data, ecological environment, water pollution, surface disturbance, and so on. Water source safety behavior can be described by the qualitative and quantitative manners. According to the development trend of quantitative results, water source safety behavior can be expressed dynamically. As an example, the proposed method was used to assess safety status of 7 water sources in the region. The numerical example shows that the proposed method is feasible and effective, and the evaluation results are reasonable.

Comparison of the Duration of Hamstring Flexibility Improvement Following Termination of Modified Dynamic Stretching, Hold-Relax, and Static Stretching

  • Moon, A-Young;Jang, Hee-Jin;Jang, Hyun-Jeong;Kim, Suhn-Yeop
    • 한국전문물리치료학회지
    • /
    • 제21권1호
    • /
    • pp.47-54
    • /
    • 2014
  • The aim of this study was to compare the duration of hamstring flexibility improvement after 3 stretching interventions in people with limited hamstring flexibility. Twenty-two subjects (12 men, 10 women) with limited hamstring flexibility of the dominant leg received 3 stretching interventions- modified dynamic stretching (MDS), hold-relax (HR), and static stretching (SS)-in a random order. All the subjects received all 3 interventions at intervals of at least 24 hours to minimize any carry-over effect. Modified dynamic stretching was applied as a closed kinetic chain exercise in the supine position by using the sling suspension system (Redcord Trainer(R)). The SS and HR interventions were individually performed in the straight leg raising (SLR) position, and all 3 interventions were performed for 3 minutes. Outcome measures included passive knee extension (PKE) measurements. Five post-test measurements were recorded for all subjects at 3, 6, 9, 15, and 30 minutes after the interventions. MDS was associated with a significant increase in knee extension range of motion even at 30 minutes post-treatment. In contrast, the HR and SS stretching methods showed increased hamstring flexibility for only 6 minutes post-treatment. Improvements in the range of motion of knee extension (indicating enhancement in hamstring flexibility) with MDS were maintained longer than those with the HR and SS interventions. Therefore, MDS may be more effective than the other interventions for maintaining hamstring flexibility.

수직다물체시스템의 반복정밀도 향상에 관한 연구 (Research for Improvement of Iterative Precision of the Vertical Multiple Dynamic System)

  • 이수철;박석순
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.64-72
    • /
    • 2004
  • An extension of interaction matrix formulation to the problem of system and disturbance identification for a plant that is corrupted by both process and output disturbances is presented. The teaming control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of loaming control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers in a decentralized system, such as a robot moving on the vertical plane with the controller for each link acting independently. The basic result of the paper is to show that stability and iterative precision of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized teaming in the coupled system, provided that the sample time in the digital teaming controller is sufficiently short. The methods of teaming system are shown up for the iterative precision of each link.

투영제어 기법을 이용한 제어기의 저차수화 설계 (Reduced-order Controller Design using Projective Controls)

  • Sang-Woo Nam
    • 전자공학회논문지B
    • /
    • 제32B권7호
    • /
    • pp.943-951
    • /
    • 1995
  • In this paper the projective controls, previously derived to preserve the dynamic modes of a state-feedback reference system, are extended to allow the preservation of the modes of a general output-feedback reference system. In general, the extension allows projective controls to be used as a controller approximation technique, where a reduced-order controller is designed to approximate the closed-loop behavior of the higher-order reference controller. This extension is useful if the best available reference control for the system is an output-feedback control. An example shows that the increased design freedom of proposed design method allows the stabilization of a given plant using a lower-order controller than the projective controls with state-feedback reference.

  • PDF

Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot-2)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1539-1543
    • /
    • 2004
  • This paper describes platform overview, system integration and dynamic walking control of the humanoid robot, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. KHR-2 has totally 41 DOF (Degree Of Freedom). Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. In order to control all joints, distributed control architecture is adopted to reduce the computation burden of the main controller and to expand the devices easily. The main controller attached its back communicates with sub-controllers in real-time by using CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operating System) for fast development of main control program and easy extension of peripheral devices. And RTX, HAL(Hardware Abstraction Layer) extension program, is used to realize the real-time control in Windows XP environment. We present about real-time control of KHR-2 in Windows XP with RTX and basic walking control algorithm. Details of the KHR-2 are described in this paper.

  • PDF

동적 이벤트 처리 기반의 RFID 시스템을 위한 애스펙트 모듈 설계 (Aspect module design for dynamic event based RFID system)

  • 박세승;황희정;최진탁
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제10권2호
    • /
    • pp.11-25
    • /
    • 2006
  • 현재 RFID 미들웨어의 표준은 RFID 표준을 주도하고 있는 EPCglobal의 ALE(Application Level Event) 이며 시스템 인프라스트럭처에 독립적으로 운영 될 수 있도록 최소한의 인터페이스와 확장점 만을 제시하고 있다. 그러나 확장점을 통한 기능의 확장에 대한 부분은 표준화 되어 있지 않으며 운영중에 있는 시스템에 적용하기 위해서는 새로운 코드를 추가 하거나 변경해야 하는 문제점이 있다. 본 논문에서는 이러한 문제점 해결을 위해 AOP(Aspect Oriented Programming) 기법을 도입한 동적 ALE 미들웨어 프레임워크를 제시하고 이를 구현하기 위한 애스펙트를 설계했다. 설계된 미들웨어 프레임워크 및 애스펙트는 동적인 기능의 확장을 제공해 기존 ALE 기반 미들웨어의 기능확장에 따르는 유지보수의 어려움을 해결하고 표준화된 방법으로 새로운 기능을 추가할 수 있다.

  • PDF

중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석 (Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo)

  • 박광필;차주환;이규열
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.