• Title/Summary/Keyword: Dynamic Structural Optimization

Search Result 344, Processing Time 0.028 seconds

Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures (골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석)

  • Lee, Han-Joo;Kim, Ji-Youn;Han, Seung-Baek;Nam, Kyung-Yun;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.

Optimal Design of CEDM considering the Dynamic Characteristics (제어봉 구동장치의 동적 특성을 고려한 최적설계)

  • 김인용;진춘언;김민규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.147-151
    • /
    • 1997
  • The dynamic characteristics of Control Element Drive Mechanism (CEDM) in Korea standard Nuclear Power Plant was reviewed as a secondary mass in a simplified two degree of freedom system, while the reactor vessel as a primary mass. The design improvement stratege to minimize each displacement amplitude of these primary and secondary masses was proposed. According to this stratege the designs of CEDM components, the shroud and the pressure housing, respectively, were changed using optimization technique.

  • PDF

Parameters identification of fractional models of viscoelastic dampers and fluids

  • Lewandowski, Roman;Slowik, Mieczyslaw;Przychodzki, Maciej
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.181-193
    • /
    • 2017
  • An identification method for determination of the parameters of the rheological models of dampers made of viscoelastic material is presented. The models have two, three or four parameters and the model equations of motion contain derivatives of the fractional order. The results of dynamical experiments are approximated using the trigonometric function in the first part of the procedure while the model parameters are determined as the solution to an appropriately defined optimization problem. The particle swarm optimization method is used to solve the optimization problem. The validity and effectiveness of the suggested identification method have been tested using artificial data and a set of real experimental data describing the dynamic behavior of damper and a fluid frequently used in dampers. The influence of a range of excitation frequencies used in experiments on results of identification is also discussed.

Experimental damage identification of cantilever beam using double stage extended improved particle swarm optimization

  • Thakurdas Goswami;Partha Bhattacharya
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.591-606
    • /
    • 2024
  • This article proposes a new methodology for identifying beam damage based on changes in modal parameters using the Double Stage Extended Improved Particle Swarm Optimization (DSEIPSO) technique. A finite element code is first developed in MATLAB to model an ideal beam structure based on classical beam theory. An experimental study is then performed on a laboratory-scale beam, and the modal parameters are extracted. An improved version of the PSO algorithm is employed to update the finite element model based on the experimental measurements, representing the real structure and forming the baseline model for all further damage detection. Subsequently, structural damages are introduced in the experimental beam. The DSEIPSO algorithm is then utilized to optimize the objective function, formulated using the obtained mode shapes and the natural frequencies from the damaged and undamaged beams to identify the exact location and extent of the damage. Experimentally obtained resultsfrom a simple cantilever beam are used to validate the effectiveness of the proposed method. The illustrated results show the effectiveness of the proposed method for structural damage detection in the SHM field.

Application of the Parallelized Topology Optimization for the Dynamic Characteristics Improvement of a DVD Pickup Bobbin (DVD 픽업보빈의 동특성 개선을 위한 병렬위상 최적설계법 응용)

  • 김태수;김재은;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.365-367
    • /
    • 2002
  • A parallelized topology optimization is applied to the design of a DVD-pickup bobbin, for which the design objective is to maximize the fundamental frequency within a given mass limit. Unlike the existing serial topology optimization, the present method can deal with a large number of design variables, and thus can yield practical and realistic results. The structural member-sizing filter is also employed to control the topological complexity of the optimized bobbin structure.

  • PDF

An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design (동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰)

  • Lee Hyun-Ah;Kim Yong-Il;Kang Byung-Soo;Kim Joo-Sung;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

Optimization of modal load pattern for pushover analysis of building structures

  • Shayanfar, Mohsen Ali;Ashoory, Mansoor;Bakhshpoori, Taha;Farhadi, Basir
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.119-129
    • /
    • 2013
  • Nonlinear Static Procedures (NSPs) have been developed as a practical tool to estimate the seismic demand of structures. Several researches have accomplished to minimize errors of NSPs, namely pushover procedures, in the Nonlinear Time History Analysis (NTHA), as the most exact method. The most important issue in a typical pushover procedure is the pattern and technique of loading which are extracted based on structural dynamic fundamentals. In this paper, the coefficients of modal force combination is focused involving a meta-heuristic optimization algorithm to find the optimum load pattern which results in a response with minimum amount of errors in comparison to the NTHA counterpart. Other parameters of the problem are based on the FEMA recommendations for pushover analysis of building structures. The proposed approach is implemented on a high-rise 20 storey concrete moment resisting frame under three earthquake records. In order to demonstrate the effectiveness and robustness of the studied procedure the results are presented beside other well-known pushover methods such as MPA and the FEMA procedures, and the results show the efficiency of the proposed load patterns.

Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity (이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치)

  • Lee Doo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

Truss optimization with dynamic constraints using UECBO

  • Kaveh, A.;Ilchi Ghazaan, M.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • In this article, hybridization of enhanced colliding bodies optimization (ECBO) with upper bound strategy (UBS) that is called UECBO is proposed for optimum design of truss structures with frequency constraints. The distinct feature of the proposed algorithm is that it requires less computational time while preserving the good accuracy of the ECBO. Four truss structures with frequency limitations selected from the literature are studied to verify the viability of the algorithm. This type of problems is highly non-linear and non-convex. The numerical results show the successful performance of the UECBO algorithm in comparison to the CBO, ECBO and some other metaheuristic optimization methods.