• Title/Summary/Keyword: Dynamic Stress Intensity Factor $K_{III}$

Search Result 3, Processing Time 0.018 seconds

Dynamic Stress Intensity Factor $K_{III}$ of Crack Propagating with Constant Velocity in Orthotropic Disk Plate Subjected to Longitudinal Shear Stress (길이방향의 전단응력을 받은 직교이방성 원판에 내재된 외부균열의 등속전파 응력확대계수 $K_{III}$)

  • 최상인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.69-79
    • /
    • 1996
  • Dynamic stress intensity factors are derives when the crack is propagating with constant velocity under longitudinal shear stress in orthotropic disk plate. General stress fields of crack tip propagating with constant velocity and least square method are used to obtain the dynamic stress intensity factor. The dynamic stress intensity factors of GLV/GTV=1(=isotropic material or transversely isotropic material) which is obtained in out study nearly coincides with Chiang's results when mode Ⅲ stress is applied to boundary of isotropic disk. The D.S.I.F. of mode Ⅲ stress is greater when α(=angle of crack propagation direction with fiber direction) is 90° than that when α is 0°. In case of a/D(a:crack length, D:disk diameter)<0. 58, the faster crack propagation velocity, the less D.S.I.F. but when crack propagation velocity arrive on ghear stress wave velocity, the D.S.I.F. but when crack propagation velocity arrive on shear stress wave velocity, the D.S.I.F. unexpectedly increases and decreases to zero.

  • PDF

Dynamic Stress Intensity Factor $K_{IIID}$ for a Propagating Crack in Liner Functionally Gradient Materials Along X Direction (X방향의 선형함수구배인 재료에서 전파하는 균열의 동적응력확대계수 $K_{IIID}$)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.3-8
    • /
    • 2001
  • Dynamic stress intensity factors (DSIFs) are obtained when a crack propagates with constant velocity in rectangular functionally gradient materials (FGMs) under dynamic mode III load. To obtain the dynamic stress intensity factors, it is used the general stress and displacement fields of FGMs for propagating crack and the boundary collocation method (BCM). The stress intensity factors and energy release rates are the greatest in the increasing properties $(\xi>0)$, next constant properties $(\x=0)$ and decreasing properties $(\xi<0)$ under constant crack tip properties and crack tip speed.

  • PDF

Analysis of Unsteady Propagation of Mode III Crack in Arbitrary Direction in Functionally Graded Materials (함수구배재료에서 임의의 방향을 따라 비정상적으로 전파하는 모드 III 균열해석)

  • Lee, Kwang Ho;Cho, Sang Bong;Hawong, Jai Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.143-156
    • /
    • 2015
  • The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode III crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.