• Title/Summary/Keyword: Dynamic Strain

Search Result 1,427, Processing Time 0.028 seconds

Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types (보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF

Damage detection in beam-type structures via PZT's dual piezoelectric responses

  • Nguyen, Khac-Duy;Ho, Duc-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.217-240
    • /
    • 2013
  • In this paper, practical methods to utilize PZT's dual piezoelectric effects (i.e., dynamic strain and electro-mechanical (E/M) impedance responses) for damage detection in beam-type structures are presented. In order to achieve the objective, the following approaches are implemented. Firstly, PZT material's dual piezoelectric characteristics on dynamic strain and E/M impedance are investigated. Secondly, global vibration-based and local impedance-based methods to detect the occurrence and the location of damage are presented. Finally, the vibration-based and impedance-based damage detection methods using the dual piezoelectric responses are evaluated from experiments on a lab-scaled beam for several damage scenarios. Damage detection results from using PZT sensor are compared with those obtained from using accelerometer and electric strain gauge.

A Study on Shaft Alignment of the Rotating Machinery by using Strain Gages (스트레인게이지를 이용한 회전체의 축정렬 연구)

  • 나상수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.63-68
    • /
    • 1999
  • Because misaligned shafts have caused noise, vibration, bearing failures, and stress concentration of coupling part, which decrease the efficiency and life of a shaft system, the proper alignment of shaft system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition, a telemetry system is this study is used to find the condition of the least bending moment, which is known by analyzing the structure and stress induced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as dynamic state with 100~700 rpm.

  • PDF

Dynamic Behavior Characteristic Test of Structural Aluminium Alloy Materials using SHPB (SHPB를 이용한 구조용 AL합금재의 동적거동 특성 시험에 관한 연구)

  • Hur, S.;Kim, D.S.;Koo, J.S.;Kang, H.S.;Hong, S.I.;Chung, D.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.419-423
    • /
    • 2001
  • It is important to know the mechanical properties of the materials under dynamic load. The mechanical properties of most materials are influenced to some extent by strain rate. One of the reliable test device for determining the mechanical properties of materials at high strain rate is Split Hopkinson Pressure bar. In this paper, we conducted the mechanical properties test for the aluminium alloy 6063 and 6061 using the SHPB device.

  • PDF

Precise Flow Stress Analysis for the Occurrence of Dynamic Ferritic Transformation and Dynamic Recrystallization of Austenite in Low Carbon Steel (고온 변형 곡선을 이용한 동적 재결정 해석과 동적 상변태의 조기 예측)

  • Park, Nokeun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.779-786
    • /
    • 2018
  • There have been previous attempts to observe the occurrence of dynamic ferritic transformation at temperatures even above $Ae_3$ in a low-carbon steel, and not only in steels, but recently also in titanium alloys. In this study, a new approach is proposed that involves treating true stress-true strain curves in uniaxial compression tests at various temperatures, and different strain rates in 0.1C-6Ni steel, which is a model alloy used to decelerate the kinetics of ferrite transformation from austenite. The initial flow stress up to peak stress was used to analyze the change in dynamic softening phenomena, such as dynamic recovery, dynamic recrystallization, and dynamic transformation. It is worth mentioning that for predicting the occurrence of dynamic transformation, flow stress before reaching peak stress is much more sensitive to the change in the dynamic softening rate due to dynamic transformation, compared to peak stress. It was found that the occurrence of dynamic ferritic transformation could be successfully obtained even at temperatures above $Ae_3$ once the deformation condition was satisfied. This deformation condition is a function of both the strain rate and the deformation temperature, which can be described as the Zener - Hollomon parameter. In addition, the driving force of dynamic ferritic transformation might be much less than that of the dynamic recrystallization of austenite at a given deformation condition. By applying this technique, it is possible to predict the occurrence of dynamic transformation more sensitively compared with the previous analysis method using peak stress during deformation.

Measurement of Dynamic Strain of Structures Using a Gold-deposited EFPI (금 증착된 광섬유 외부 패브리-페로 간섭( EFPI ) 센서를 이용한 구조물의 동적 변형률 측정)

  • Kim, Dae-Hyeon;Gang, Hyeon-Gyu;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.52-58
    • /
    • 2002
  • Measurment of dynamic strain is important to monitor structural integrity. In this paper, the new type of EFPI is proposed to measure the dynamic strain. The second reflecting surface of fiber in this new sensor is deposited gold on to increase its reflectivity. So, it is called the gold-deposited EFPI (G-EFPI) in this paper. In order to explain the principle of measurement of the dynamic strain, two models for the loss of intensity are proposed and an experiment is performed. If a cavity between two reflecting surface increases, the loss of the light that passes through the cavity increases, causing a subsequent decrease in the output intensity of the sensor. Conversely, if the cavity decreases, the amount of loss decreases and the output intensity increases. Also the optimal length of the cavity is proposed to manufacture the G-EFPI with high sensitivity. Finally, the dynamic strainof a composite specimen was measured successfully using the G-EFPI.

Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content (구리-크롬 소결단조 합금의 크롬 함유량 변화에 따른 동적 물성특성)

  • Song Jung-Han;Huh Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.670-677
    • /
    • 2006
  • Vacuum interrupters are used in various switch-gear components such as circuit breakers, distribution switches, contactors. The electrodes of a vacuum interrupter are manufactured of sinter-forged Cu-Cr material for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain-rate at the given velocity, the dynamic material property of the sinter-forged Cu-Cr alloy is important to design the vacuum interrupter reliably and to identify the impact characteristics of a vacuum interrupter accurately. This paper is concerned with the dynamic material properties of sinter-forged Cu-Cr alloy for various strain rates. The amount of chrome is varied from 10 wt% to 30 wt% in order to investigate the influence of the chrome content on the dynamic material property. The high speed tensile test machine is utilized in order to identify the dynamic property of the Cu-Cr alloy at the intermediate strain-rate and the split Hopkinson pressure bar is used at the high strain-rate. Experimental results from both the quasi-static and the high strain-rate up to the 5000/sec are interpolated with respect to the amount of chrome in order to construct the Johnson-Cook and the modified Johnson-Cook model as the constitutive relation that should be applied to numerical simulation of the impact behavior of electrodes.

Development of the Strain Measurement-based Impact Force Sensor and Its Application to the Dynamic Brazilian Tension Test of the Rock (변형률 게이지 측정원리를 이용한 충격 하중 센서의 개발 및 암석의 동적 압열 인장 실험에 적용)

  • Min, Gyeong-jo;Oh, Se-wook;Wicaksana, Yudhidya;Jeon, Seok-won;Cho, Sang-ho
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In order to obtain the dynamic response behavior of the rock subjected to blasting loading, a shock-proof high sensitivity impact sensor which can measure high frequency dynamic force and strain events should be adopted. Because the impact sensors which uses quartz and piezoelectric element are costly, generally the strain measurement-based impact (SMI) sensors are applied to high speed loading devices. In this study, dynamic Brazilian tension tests of granitic rocks was conducted using the Nonex Rock Cracker (NRC) reaction driven-high speed loading device which adopts SMI sensors. The dynamic response of the granite specimens were monitored and the intermediate strain rate dependency of Brazilian tensile strengths was discussed.

The Analysis of Tidal Effect on Stress-Strain Behavior in the Boundary Surface of Sea Dike Embankment (조석현상이 방조제 경계면의 응력-변형 거동에 미치는 영향 분석)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study was performed for the purpose of analyzing the effect of tide on the stress-strain behavior in the boundary surface of sea dike embankment. Tide is a dynamic condition, but there are not suitable numerical models to solve the dynamic embankment condition caused by tide. So the analysis was simplified to quasi dynamic as follow. First, seepage by tide was analyzed according to elapsed time, and the results of the analysis at every hour during one periodic cycle time of 12 hours were applied to the pore water pressure conditions of stress-strain analysis with hyperbolic model by Duncan and Chang. The place at which maximum shear strain took place in the analysis result moved up and down repeatedly along the boundary of the dredged sand fill section and the crashed stone filter section. The value of maximum shear strain was large at high water level of tide. This result means that contraction and relaxation occur in turn repeatedly at every specific position along the boundary, and the repeated action compact loose position with sand moved down from the upper position by gravity. The experiment with the small sea dike model showed the result consistent with the numerical analysis. The surface of sea side on the dike collapsed at high water level after a couple of repetition of the rising and falling of water.

The Distribution of the Normal Traffic Loads on the Steel Plate Girder Bridge (실동하중에 의한 강판형교의 교통하중 분포)

  • Woo, Sang-Ik;Jung, Kyoung-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • The objectives of the study are to know the strain distribution and modal dynamic behaviour of steel bridge girders by actual traffic load. The live load effect depends on many parameters including the span length, gross vehicle weight, axle weight, axle configuration so on. For the estimation of static and dynamic characteristic, strain data caused by moving loads and traffic characteristics of passing vehicle under actual traffic load have measured using Bridge Weigh in Motion. To confirm the reliability of BWIM system, strain data measured using the $120{\Omega}$ strain gauge under the same condition. It is considered that the data acquired from BWIM system have reliability through the analysis and comparison between stress measured by strain data from BWIM and computed by FEM. Additionally according to the measured strain data of up-line and down-line on the highway, the up-line bridge grows more faster than the down-line bridge and girder 4 and 5 carry more load when vehicles pass the inner line and girder 2 and 3 does when vehicles pass the outer line as this case(the bridge composed with 5 girders).

  • PDF