• 제목/요약/키워드: Dynamic Stability Derivatives

검색결과 44건 처리시간 0.017초

Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.;Xu, Y.L.
    • Wind and Structures
    • /
    • 제10권5호
    • /
    • pp.463-479
    • /
    • 2007
  • A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm (ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The methodology was further verified by the comparison between the measured and predicted free-decay responses. A comparison of results for different gap-widths revealed that variations of the gap-width mainly affect the torsional damping property, and that the configurations with greater gap-widths show a higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.

Adaptive finite element wind analysis with mesh refinement and recovery

  • Choi, Chang-Koon;Yu, Won-Jin
    • Wind and Structures
    • /
    • 제1권1호
    • /
    • pp.111-125
    • /
    • 1998
  • This paper deals with the development of variable-node element and its application to the adaptive h-version mesh refinement-recovery for the incompressible viscous flow analysis. The element which has variable mid-side nodes can be used in generating the transition zone between the refined and unrefined element and efficiently used for the construction of a refined mesh without generating distorted elements. A modified Guassian quadrature is needed to evaluate the element matrices due to the discontinuity of derivatives of the shape functions used for the element. The penalty function method which can reduce the number of the independent variables is adopted for the purpose of computational efficiency and the selective reduced integration is carried out for the convection and pressure terms to preserve the stability of solution. For the economical analysis of transient problems in which the locations to be refined are changed in accordance with the dynamic distribution of velocity gradient, not only the mesh refinement but also the mesh recovery is needed. The numerical examples show that the optimal mesh for the finite element analysis of a wind around the structures can be obtained automatically by the proposed scheme.

헬리콥터 시뮬레이션용 GUI S/W 개발 (GUI S/W Development for Helicopter Simulation)

  • 박상선;이상기;이환;주광혁
    • 한국항공우주학회지
    • /
    • 제31권9호
    • /
    • pp.88-93
    • /
    • 2003
  • 본 논문은 헬리콥터용 시뮬레이션 프로그램 개발에 관한 연구이다. 일반적으로 헬리콥터 비행시뮬레이션에 사용되는 수학모델은 고 충실도를 가져야 한다. 그러므로 시뮬레이션을 실행할 때 보다 정교하 공력 모델이 필요하게 되며, 계산시간이 많이 걸린다. 어떠한 특수 목적을 수행하는 UAV 비행제어시스템에서는 제어기를 설계할 때 사용되는 선형모델을 비선형모델로부터 얻는 시간을 최소화 하는 것이 중요하다. 이와 같은 목적을 달성하기 위한 첫 번째 단계는 실제로 헬리콥터 동특성을 잘 나타내는 비선형 모델을 완성하는 일이다. 두 번째 단계는 비선형방정식으로부터 특정 비행조건에 맞는 트림값을 계산하는 것이다. 그리고 나서 수치적인 방법으로 안정미계수와 조종미계수를 계산하여 특정 비행 상태 조건에 부합하는 선형모델을 구한다. 이러한 과정을 편리하게 처리하는 프로그램을 MATLAB GUI를 사용해서 개발하였다. 이 논문에서 제안된 방법은 기존의 실물크기 모델헬리콥터 시뮬레이션 방법에 비해 간략화된 것이다. 따라서 선형모델을 얻기까지의 연산시간이 짧아서 무인헬리콥터의 비행제어시스템을 설계하는데 유용할 것이다.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권1호
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.