• Title/Summary/Keyword: Dynamic Spacer

검색결과 34건 처리시간 0.024초

ATM망에서 트래픽 제어용 동적 지연기를 적용한 개선된 UPC 알고리즘 (Improved UPC Algorithm Adopting a Dynamic Spacer for Traffic Control in ATM Networks)

  • 김우완
    • 한국멀티미디어학회논문지
    • /
    • 제8권2호
    • /
    • pp.192-200
    • /
    • 2005
  • ATM망에서 트래픽을 동적으로 제어하기 위한 개선된 사용자 파라미터 제어 알고리즘을 본 논문에서 제안한다. 기존의 알고리즘은 Cell Buffer, Red Token Pool, Green Token Pool, Spacer와 같은 지연요소로 구성되어 있다. 이는, 일정 기간이 지나면 토큰이 발생되고, 셀이 도착하면 Token Pool에서 토큰을 하나씩 소모시키며, Spacer라는 지연요소가 비어 있는지 확인하여 비어있으면 셀이 네트워크로 유입되고, 비어 있지 않으면 유입이 될 수 가 없다. 그리고 Token Pool에 토큰이 없는 경우에는 해당 셀을 폐기하게 된다. 본 논문에서 사용하는 Token은 기존의 중재기능은 삭제하고 네트워크의 트래픽 제어를 위한 용도로 사용된다. 또한 본 논문에서는 셀이 Spacer에 의해 일정시간 지연 이후에 네트워크에 유입되는 기존의 정적인 Spacer를 적용한 방법과 달리, 트래픽 상태에 따라 동적으로 지연요소인 Spacer를 적용함으로써 셀 지연율과 셀 손실율이 개선된 진화한 UPC 알고리즘을 제안한다.

  • PDF

격자 구조물의 비선형 동적 측면 충격해석 (Nonlinear Dynamic Lateral Buckling Behavior of a Grid Structures)

  • 윤경호;송기남;김홍배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.254-260
    • /
    • 2000
  • The spacer grid is one of the main structural components in fuel assembly, which supports the fuel rods, guides cooling water, and protects the fuel assembly from the external impact load such as earthquakes. The nonlinear dynamic impact analysis is conducted by using the finite element code ABAQUS/Explicit. Boundary condition for dynamic analysis is well applied to the test condition. Simulation results also similarly predict the local buckling phenomena. In addition to the buckling parameter, the local buckling cause is examined by both simulation and test method. It is found to correspond well with the test results. Impact tests are also carried out for some specimens of the spacer grid in order to compare the results between the test and the simulation. This test is accomplished by a free fall dummy weight onto the specimen. From this test, only the uppermost and lowermost layers of the multi-cell are buckled, which implies the local buckling at the weakest point of the grid structure.

  • PDF

$6{\times}6$ 지지격자로 지지된 핵연료봉 튜브의 진동특성 (Dynamic Characteristics of Nuclear Fuel Tube with $6{\times}6$ Spacer Grids)

  • 문효익;이희남;장영기;이승태;김재익;박남규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.361-365
    • /
    • 2007
  • 우라늄을 내장한 연료봉은 핵분열이 일어나는 우라늄 펠렛(pellet)을 1차적으로 차폐하는 중요한 구조물이다. 연료봉은 원자로 내에서 유체유발진동에 의해 손상될 수 있으며, 본 연구에서는 유동유발진동 특성을 예측하기 위해 핵연료봉의 동특성 규명을 위한 모드해석을 수행하였다. 핵연료봉의 진동특성을 규명하기 위해 제작한 시험장치를 이용하여 피복관(clad tube)의 진동특성실험과 유한 요소 해석을 수행하였다. 모드시험(Modal Testing)은 현재 상용 핵연료봉(튜브)을 대상으로 수행되었으며, 유한 요소 해석 모델을 개발하여 해석 결과와 시험 결과를 비교 분석하였다.

  • PDF

Seismic behavior of fuel assembly for pressurized water reactor

  • Jhung, Myung J.;Hwang, Won G.
    • Structural Engineering and Mechanics
    • /
    • 제2권2호
    • /
    • pp.157-171
    • /
    • 1994
  • A general approach to the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced form earthquake. The dynamic responses such as fuel assembly deflected shapes and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed.

토큰 버킷을 적용한 다이나믹 스페이서 UPC 알고리즘 (Dynamic Spacer UPC Algorithm Adopting Token Bucket for Traffic Control in ATM Network)

  • 박용근;한헌수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.39-45
    • /
    • 2008
  • ATM망에서 트래픽의 버스트니스를 완화하기 위한 UPC(Usage Parameter Control) 알고리즘을 제안한다. 기존의 다이나믹 스페이서는 그린 토큰이 축적되어 있을 경우 도착하는 셀을 스페이서와 상관없이 네트워크로 셀을 유입시키는 동적인 스페이서 기능을 수행함으로써 CDV(Cell Delay Variation)에 의한 셀을 위반셀로 구별하지 못하고 그대로 통과시키는 단점이 있다. 즉 스페이서 기능을 사용하지 않음으로써 버스트니스해 질 수 있다. 따라서 본 논문에서는 버스트니스를 완화하기 위한 토큰 버킷을 다이나믹 스페이서 이전에 사용함으로써 다이나믹 스페이서의 버스트니스를 완화시키는 토큰 버킷을 적용한 다이나믹 스페이서 UPC 알고리즘을 제안한다.

  • PDF

Structural Integrity of PWR Fuel Assembly for Earthquake

  • Jhung, M.J.
    • Nuclear Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.212-221
    • /
    • 1998
  • In the present study, a method for the dynamic analysis of a reactor core is developed. Peak responses for the motions induced from earthquake are obtained for a core model. The dynamic responses such as fuel assembly shear force, bending moment, axial force and displacement, and spacer grid impact loads are investigated. Prediction of fuel assembly stress during an earthquake requires development of a fuel assembly stress analysis model capable of interfacing with the models and results discussed in the dynamic analysis of a reactor core. This analysis uses beam characteristics which describe the overall fuel assembly response. The stress analysis method and its application for the case of an increased seismic level are also presented.

  • PDF

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.

충격과 마모를 고려한 원자로 핵연료봉 지지격자의 설계 (Design of a Nuclear Fuel Spacer Grid Considering Impact and Wear)

  • 이현아;김종기;송기남;박경진
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.999-1008
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods safely. Therefore, the spacer grid set should have sufficient strength for the external impact forces such as earthquake. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to flow-induced vibration. Conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined for the impact load and the fretting wear, and corresponding design parameters are selected. The overall flow of design is defined according to the application of axiomatic design. Design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. The deformation of a structure is called homologous if a given geometrical relationship holds before, during, and after the deformation. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis.

호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계 (Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints)

  • 이현아;김종기;송기남;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF

HDD 디스크-스핀들 시스템의 동특성 개선에 관한 연구 (A Study on Dynamic Performance Improvement of HDD Disk-Spindle System)

  • 좌성훈;손진승;이행수;홍민표;고정석;곽주영;조은형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1130-1135
    • /
    • 2001
  • This paper investigated the dynamic performance of HDD disk-spindle system to reduce disk fluttering. Rocking frequencies of the disk-spindle system and radial NRRO are measured to escape the ball defect frequencies and to determine the relative optimal position of the disk in the motor. It was found that disk fluttering was reduced by increasing disk thickness, inserting viscoelastic material between the disk and the spacer and decreasing the gap between the disk and the base.

  • PDF