• Title/Summary/Keyword: Dynamic Source Routing(DSR)

Search Result 48, Processing Time 0.023 seconds

On Improving DSR routing protocol

  • Ha, Eun-Yong;Piao, Dong-Huan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1609-1612
    • /
    • 2004
  • Ad hoc network is a kind of new wireless network paradigm for mobile hosts. Ad Hoc wireless networks consist of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. Mobile hosts rely on each other to keep the network connected. Each host is not only mobile hosts but also router. So how to design a routing protocol is the most important problem. Dynamic source routing is a kind of routing protocol. In this paper we suggest a new automatic route shortening method and an energy-aware routing mechanism based on DSR.

  • PDF

Cluster-based AODV for ZigBee Wireless Measurement and Alarm Systems (ZigBee 무선계측/경보 시스템을 위한 클러스터 기반의 AODV)

  • Park, Jae-Won;Kim, Hong-Rok;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.920-926
    • /
    • 2007
  • Establishing a fixed path for the message delivery through a wireless network is impossible due to the mobility. Among the number of routing protocols that have been proposed for wireless ad-hoc networks, the AODV(Ad-hoc On-demand Distance Vector) algorithm is suitable in the case of highly dynamic topology changes, along with ZigBee Routing(ZBR), with the exception of route maintenance. Accordingly, this paper introduces a routing scheme focusing on the energy efficiency and route discovery time for wireless alarm systems using IEEE 802.15.4-based ZigBee. Essentially, the proposed routing algorithm utilizes a cluster structure and applies ZBR within a cluster and DSR (Dynamic Source Routing) between clusters. The proposed algorithm does not require a routing table for the cluster heads, as the inter-cluster routing is performed using DSR. The performance of the proposed algorithm is evaluated and compared with ZBR using an NS2 simulator. The results confirm that the proposed Cluster-based AODV (CAODV) algorithm is more efficient than ZBR in terms of the route discovery time and energy consumption.

Scalable Cluster Overlay Source Routing Protocol (확장성을 갖는 클러스터 기반의 라우팅 프로토콜)

  • Jang, Kwang-Soo;Yang, Hyo-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • Scalable routing is one of the key challenges in designing and operating large scale MANETs. Performance of routing protocols proposed so far is only guaranteed under various limitation, i.e., dependent of the number of nodes in the network or needs the location information of destination node. Due to the dependency to the number of nodes in the network, as the number of nodes increases the performance of previous routing protocols degrade dramatically. We propose Cluster Overlay Dynamic Source Routing (CODSR) protocol. We conduct performance analysis by means of computer simulation under various conditions - diameter scaling and density scaling. Developed algorithm outperforms the DSR algorithm, e.g., more than 90% improvement as for the normalized routing load. Operation of CODSR is very simple and we show that the message and time complexity of CODSR is independent of the number of nodes in the network which makes CODSR highly scalable.

Routing Protocols for VANETs: An Approach based on Genetic Algorithms

  • Wille, Emilio C. G.;Del Monego, Hermes I.;Coutinho, Bruno V.;Basilio, Giovanna G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.542-558
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) are self-configuring networks where the nodes are vehicles equipped with wireless communication technologies. In such networks, limitation of signal coverage and fast topology changes impose difficulties to the proper functioning of the routing protocols. Traditional Mobile Ad Hoc Networks (MANET) routing protocols lose their performance, when communicating between vehicles, compromising information exchange. Obviously, most applications critically rely on routing protocols. Thus, in this work, we propose a methodology for investigating the performance of well-established protocols for MANETs in the VANET arena and, at the same time, we introduce a routing protocol, called Genetic Network Protocol (G-NET). It is based in part on Dynamic Source Routing Protocol (DSR) and on the use of Genetic Algorithms (GAs) for maintenance and route optimization. As G-NET update routes periodically, this work investigates its performance compared to DSR and Ad Hoc on demand Distance Vector (AODV). For more realistic simulation of vehicle movement in urban environments, an analysis was performed by using the VanetMobiSim mobility generator and the Network Simulator (NS-3). Experiments were conducted with different number of vehicles and the results show that, despite the increased routing overhead with respect to DSR, G-NET is better than AODV and provides comparable data delivery rate to the other protocols in the analyzed scenarios.

Reactive Routing Keyword based Routing Procedure in MANET (MANET에서의 Reactive Routing Keyword 기반 라우팅 프로시듀어)

  • Park Soo-Hyun;Shin Soo-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.4
    • /
    • pp.55-69
    • /
    • 2004
  • In MANET(Mobile Ad-hoc Network), unlike in wired networks, a path configuration should be in advance of data transmission along a routing path. Frequent movement of mobile nodes, however, makes it difficult to maintain the configured path and requires re-configuration of the path very often. It may also leads to serious problems such as deterioration of QoS in mobile ad-hoc networks. In this paper, we proposed a Reactive Routing Keyword (RRK) routing procedure to solve those problems. Firstly, we noticed it is possible in RRK routing to assign multiple routing paths to the destination node. We applied this feature into active networks and SNMP information based routing by storing unique keywords in cache of mobile nodes corresponding to present and candidate routings in a path configuration procedure. It was shown that the deterioration of QoS which may observed in Dynamic Source Routing(DSR) protocol was greatly mitigated by using the proposed routing technique.

  • PDF

A New Automatic Route Shortening for DSR

  • Ha, Eun-Yong;Piao, Dong-Huan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.31-33
    • /
    • 2004
  • We suggest an enhanced automatic route shortening method for dynamic source routing (DSR) protocol. DSR is a request / response based protocol which has low routing overhead owing to node movement. The original automatic route shortening is performed on the only nodes that belong to the source route of packets. On the contrary, our suggested method allows all neighbor nodes hearing the packet to participate in automatic route shortening. It makes all possible route shortenings be performed. So we maintain maximal short routes of ongoing data connections. Simulation results show that our method pays small extra overhead for ARS, but increases the ratio of packet transmissions and ARS' are performed from 2 to 5 times as much as original ARS.

  • PDF

A Route Shortening Mechanism for DSR protocol in Mobile Ad-Hoc Networks (이동 애드혹 네트워크에서 DSR 프로토콜을 위한 경로 축소 방법)

  • Ha, Eun-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.475-482
    • /
    • 2007
  • Mobile nodes in ad-hoc wireless networks play roles of router as well as host. Movement of nodes causes network topology changes, which make existing routing information be modified. Therefore many routing protocols for ad-hoc networks were suggested in the literature. In this paper, we suggest an enhanced automatic route shortening method for dynamic source routing(DSR) protocol. DSR is a request/response based protocol which has low routing overhead owing to node movement. The current automatic route shortening is performed on the only nodes which belong to the source route of packets. On the contrary, our suggested method allows all neighbor nodes hearing the packet to participate in automatic route shortening. It makes all possible route shortenings be performed. So we maintain maximal shortened routes of ongoing data connections. Simulation results with ns2 show that our method pays small extra protocol overhead for ARS, but increases the ratio of successful packet transmissions and the number of ARSs performed in our mechanism is from 2 to 5 times higher than in original ARS mechanism and therefore it will improve the network-wide energy consumption in wireless ad-hoc networks.

Cluster Routing for Service Lifetime of Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크의 서비스 수명을 위한 클러스터 라우팅)

  • Lee, Chongdeuk
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.279-284
    • /
    • 2013
  • This paper proposes a new cluster-based routing protocol for assuring the service lifetime of wireless multimedia sensor networks. The proposed protocol performs the intra-cluster routing and inter-cluster routing to reduce the energy consumption and service lifetime in the wireless sensor multimedia computing environment, and the proposed mechanism enhances the routing reliability, and it minimizes the packet loss, overhead, and energy consumption. The simulation results show that the proposed mechanism outperforms DSR and AODV.

An On Demand Routing Algorithm for Mobile Wireless Networks

  • Yan, Huai-Zhi;Ajith, P.K.;Park, Dong-Won;Joo, Gi-Ho
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.37-51
    • /
    • 2005
  • An and hoc network is a collection of wireless mobile nodes forming a temporary network without the centralized administration. Due to the limited transmission range of wireless work interface, multiple networks "hops" maybe needed for one node to exchange data with adjacent node. In recent years, a variety of new routing protocol about ad hoc network was developed. This paper presents a new routing protocol based on the Dynamic Source Routing which is not suitable for the high mobility ad hoc network. The Enhanced DR adapts quickly to routing changes when node movement is frequent. When a trunk route is broken, this protocol will utilize the alternative route saved in the route to discovery quickly the new route. It improves the performance of the existing DSR algorithm, so that the negative impacts from weakness of DSR are reduced.

  • PDF

Performance Improvement of Efficient Routing Protocol Based on Small End-to-End Sequence Numbers (작은 종단연결 순차번호를 이용한 효율적인 라우팅 프로토콜의 성능향상)

  • Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1565-1570
    • /
    • 2014
  • In networking communication, nodes and base station send data to each nodes and destination nodes. In this perspective, it is very important to determine the direction in which data sent to each nodes or destination nodes. Ad-hoc routing protocol is a standard routing protocol that determines how the packets sent to destination. Ad-hoc routing protocol includes protocols such as Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR). In our efficient proposed protocol based on small end-to-end sequence numbers, route direction can be changed properly with the assistance of helper nodes. In this paper, we focus on the simulation analysis of proposed protocol and comparison with other routing protocol models such as AODV and DSR. We simulated using Network Simulator (NS-2) by parameters such as simulation time, number of nodes and packet size based on our metrics (packet delivery fraction, routing load, data throughput). Our proposed protocol based on small end-to-end sequence numbers shows better performance and superior to other two protocols.