• 제목/요약/키워드: Dynamic Simulation Model

검색결과 2,968건 처리시간 0.03초

사각보행기의 고속 보행제어를 위한 동적 모델링 및 해석 (A Dynamic Modeling and Analysis for High-speed Walking of a Quadrupedal Robot)

  • 강성철;유홍희;김문상;이교일
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.756-768
    • /
    • 1997
  • In order to control a dynamic gait of quadrupedal walking robot, the equations of motion of the whole mechanism are required. In this research, the equations of motion are formulated analytically using Kane's dynamic approach. As a dynamic gait model, a trot gait has been adopted. The degree of freedom of whole mechanism could be reduced to 7 by idealizing the kinematic feature of the trot gait. Using the equations of motion formulated, the results of the redundant-joint torque analysis and the simulation of dynamic walking motion are presented.

스프레이와 댐퍼를 이용한 관류 보일러 스팀 온도의 (2X2) 동역학 행렬 제어에 관한 연구 (A Study on Dynamic Matrix Control using Spray and Damper to Once-through Boiler Steam Temperature)

  • 김우헌;문운철
    • 조명전기설비학회논문지
    • /
    • 제24권1호
    • /
    • pp.91-97
    • /
    • 2010
  • 동역학 행렬 제어(Dynamic Matrix Control) 기법은 각종 산업 현장에서 가장 활발하게 적용되고 있는 고급 제어 기법으로, 최근에는 공정제어의 표준 기법으로 인식되고 있다. 일반적으로 동역학 행렬 제어에서는 대상 플랜트의 거동을 묘사하기 위하여 계단 응답 모델을 이용한다. 본 논문에서는 화력발전의 관류 보일러-터빈 시스템에 동역학 행렬 제어 기법을 적용한 결과를 제시한다. 먼저 제어를 위해 두 개의 입력변수로 스프레이와 댐퍼를 선정한 후, 두 개의 주요 출력 변수에 대한 계단 응답 모델을 생성하였다. 그 후, 생성된 2 입력 - 2 출력 계단 응답 모델을 바탕으로 한, 동역학 행렬 제어의 최적화 계산을 통해 매 순간 보일러 스팀 온도를 제어하는 구조의 제어기를 설계하였다. 제시된 제어기를 두산(주)의 보일러 시뮬레이션 모델인 APESS에 적용한 결과 만족할 만한 제어 성능을 나타냄을 확인하였다.

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.

그리드 컴퓨팅에서 유효자원 동적 재배치 기반 작업 스케줄링 모델 (Dynamic Available-Resource Reallocation based Job Scheduling Model in Grid Computing)

  • 김재권;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제21권2호
    • /
    • pp.59-67
    • /
    • 2012
  • 그리드 컴퓨팅은 하나의 대용량 작업을 처리하도록 물리 자원을 구성하고 있지만 최근에는 데이터의 급속한 증가로 인해서 복수개의 작업을 처리하는 방법이 필요하다. 일반적으로 대용량 작업을 요청하면 각 물리 자원들이 작업을 분할하게 되며, 자원의 성능과 거리에 따라 처리 시간이 다르다. 성능에 따라 먼저 완료된 유효자원은 어떠한 작업도 하지 않으며, 모든 작업이 끝났을 경우에 다음 작업을 처리한다. 이에 본 논문에서는 먼저 처리가 완료된 자원을 다른 작업에 할당할 수 있는 동적 자원 재배치 스케줄링 모델(DRRSM: Dynamic Resource Reallocation Scheduling Model)을 제안한다. DRRSM은 먼저 처리가 완료된 자원을 다른 작업에 자원의 성능과 거리에 따라 작업을 재배치시키는 방법이다. DRRSM은 여러 개의 대용량 작업을 처리하는데 효과적이다.

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

모티베이션 다이내믹스 : VENSIM을 이용한 성취동기모형의 시스템 다이내믹스 분석 (Motivation Dynamics : System Dynamics Approach for Analyzing Dynamic Motivation Model Using VENSIM)

  • 손태원;정한규
    • 한국시스템다이내믹스연구
    • /
    • 제1권1호
    • /
    • pp.57-79
    • /
    • 2000
  • Most model constructs in organization studies are descriptive in nature, and the conclusions relating to the model behavior over time are speculative. The usefulness of System Dynamics as a methodology for modeling and testing dynamic behavioral hypotheses in organizational behavioral studies is presented, and how to construct a System Dynamics model using simulation software(VENSIM) is shown, The well-know March and Simon motivation model is used to demonstrate the step by step application of System Dynamics to model of this type. The dynamic behavior of the model, both transient and steady state, is obtained, Even though the paper has focused on one model in the area of individual behavior, the approach is general and can be applied to other areas of organizational behavior as will. The usefulness of System Dynamics as a methodology for theory building is identified as well.

  • PDF

중장비 구동체계의 제어용 동적 모델에 관한 연구 (A study on the dynamic modeling of driving system of a heavy industrial vehicle)

  • 홍성욱;강민식;이종원;김광준
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.222-233
    • /
    • 1987
  • 본 논문에서는 이와 관련하여 전형적인 중장비 구동체계를 대상으로 동적모델 을 유도하는 일련의 과정을 제시하고 구동체계의 효율적 제어를 위한 간략화된 모델을 유도하였다.

A Three-dimensional Biomechanical Model for Numerical Simulation of Dynamic Pressure Functional Performances of Graduated Compression Stocking (GCS)

  • Liu, Rong;Kwok, Yi-Lin;Li, Yi;Lao, Terence-T;Zhang, Xin;Dai, Xiao-Qun
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.389-397
    • /
    • 2006
  • The beneficial effects of graduated compression stockings (GCS) in prophylaxis and treatment of venous disorders of human lower extremity have been recognized. However, their pressure functional performances are variable and unstable in practical applications, and the exact mechanisms of action remain controversial. Direct surface pressure measurements and indirect material properties testing are not enough for fully understanding the interaction between stocking and leg. A three dimensional (3D) biomechanical mathematical model for numerically simulating the interaction between leg and GCS in dynamic wear was developed based on the actual geometry of the female leg obtained from 3D reconstruction of MR images and the real size and mechanical properties of the compression stocking prototype. The biomechanical solid leg model consists of bones and soft tissues, and an orthotropic shell model is built for the stocking hose. The dynamic putting-on process is simulated by defining the contact of finite relative sliding between the two objects. The surface pressure magnitude and distribution along the different height levels of the leg and stress profiles of stockings were simulated. As well, their dynamic alterations with time processing were quantitatively analyzed. Through validation, the simulated results showed a reasonable agreement with the experimental measurements, and the simulated pressure gradient distribution from the ankle to the thigh (100:67:30) accorded with the advised criterion by the European committee for standardization. The developed model can be used to predict and visualize the dynamic pressure and stress performances exerted by compression stocking in wear, and to optimize the material mechanical properties in stocking design, thus, helping us understand mechanisms of compression action and improving medical functions of GCS.

Development of a Real-Time Vehicle Dynamic Model for a Tracked Vehicle Driving Simulator

  • Lee, Ji-Young;Lee, Woon-Sung;Lee, Ji-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.115.2-115
    • /
    • 2002
  • A real-time vehicle simulation system is a key element of a driving simulator because accurate prediction of vehicle motion with respect to driver input is required to generate realistic visual, motion, sound and proprioceptive cues. In order to predict vehicle motion caused by various driving actions of the driver on board the simulator, the vehicle model should consist of complete subsystems. On this paper, a tracked vehicle dynamic model with high efficiency and effectiveness is introduced that has been implemented on a training driving simulator. The multi-body vehicle model is based on recursive formulation and has been automatically generated from a symbolic computation package develop...

  • PDF

유압회로를 기반으로 한 사출성형기의 해석모델 개발 및 공정 별 특성검토 (Development of Injection Molding Machine Simulation Model Based on Hydraulic Circuit, and Operating Characteristic Examination)

  • 노대경;장주섭;어승룡
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.7-16
    • /
    • 2014
  • Vehicle industry is developing research for producing high quality injection molded product. The main objective of this study is providing information about hydraulic system for researchers who are involved in the other fields, not hydraulic field. Another objective is developing hydraulic circuit simulation model which analyzes the cause of several destabilizing elements related to quality of injection molded products. Injection molded product consists of a lot of hydraulic parts, and there are many nonlinear facts for dynamic behavior. So, we used 'SimulationX' which is specialized in hydraulic system for developing simulation model.