• Title/Summary/Keyword: Dynamic Simulation Model

Search Result 2,968, Processing Time 0.033 seconds

DEVELOPMENT OF MATDYMO(MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) II: DEVELOPMENT OF VEHICLE AND DRIVER AGENT

  • Cho, K.Y.;Kwon, S.J.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the companion paper, the composition and structure of the MATDYMO (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model) were proposed. MATDYMO consists of the road management system, the vehicle motion control system, the driver management system, and the integration control system. Among these systems, the road management system and the integration control system were discussed In the companion paper. In this paper, the vehicle motion control system and the driver management system are discussed. The driver management system constructs the driver agent capable of having different driving styles ranging from slow and careful driving to fast and aggressive driving through the yielding index and passing index. According to these indices, the agents pass or yield their lane for other vehicles; the driver management system constructs the vehicle agents capable of representing the physical vehicle itself. A vehicle agent shows its behavior according to its dynamic characteristics. The vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation is conducted for an interrupted flow model and its results are verified by comparison with the results from a commercial software, TRANSYT-7F. The interrupted flow model simulation is implemented for three cases. The first case analyzes the agents' behaviors in the interrupted flow model and it confirms that the agent's behavior could characterize the diversity of human behavior and vehicle well through every rule and communication frameworks. The second case analyzes the traffic signals changed at different intervals and as the acceleration rate changed. The third case analyzes the effects of the traffic signals and traffic volume. The results of these analyses showed that the change of the traffic state was closely related with the vehicle acceleration rate, traffic volume, and the traffic signal interval between intersections. These simulations confirmed that MATDYMO can represent the real traffic condition of the interrupted flow model. At the current stage of development, MATDYMO shows great promise and has significant implications on future traffic state forecasting research.

Analysis of Dynamic Characteristics of a Vehicle Undergoing Turning and Braking (선회중 제동을 고려한 차량의 동특성 연구)

  • Kang, J.S.;Yun, J.R.;Min, H.K.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.109-118
    • /
    • 1995
  • This paper presents a mathematical vehicle model to analyze the dynamic characteristics of a vehicle undergoing braking in a turn. Two kinds of field tests, braking in a steady state turn and braking in a J-turn are performed. Computer simulation results are compared with test results and the braking effect on a vehicle cornering behavior is examined. Also, sensitivity analysis is applied to determine the effect of design parameter changes on the response of vehicle dynamic system.

  • PDF

An Evaluation of Flowshop Scheduling Heuristics in a Dynamic Environment (동적(動的)환경에서의 flowshop 작업순서 결정(決定)을 위한 발견적(発見的) 기법(技法)들의 유효성(有效性)에 관한 연구)

  • Park, Yang-Byeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 1986
  • This paper provides an evaluation of static flowshop scheduling heuristics for minimizing makespan as an objective function in the dynamic flowshop model, in which new jobs with stochastic processing times arrive at the shop randomly over time and are added into the waiting jobs for processing. A total of sixteen scheduling heuristics, including several revisions and combinations of previously reported me-sixteen scheduling heuristics, including several revisions and combinations of previously reported methods, are surmmarized. These scheduling rules are evaluated via computer using a SLAM discrete event simulation model. The results for the simulation are analyzed using both statistical and nonstatistical methods. The results from the study suggest which of the popular scheduling rules hold promise for application to practical dynamic flowshop problems.

  • PDF

Analysis of Dynamic Behavior for Design Review of the Korean High Speed Prototype Test Train (한국형 고속전철 시제차량 설계검증을 위한 동특성 해석)

  • ;;Johannes Picht
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1232-1240
    • /
    • 2001
  • In this study. a computer simulation of the Korean High Speed Prototype Test Train was performed to investigate the dynamic behavior(running stability. safety and comfort) in detail design process. The simulation model which was prepared by ADAMS/Rail V10.l consists of power car and middle car assembly (2 motorized cars + 3 trailer cars). The nonlinear analysis takes into account the full vehicle model including wheel/rail contact and the influence of disturbed track. Throughout the dynamic calculation of KHST on the straight and the curved track. accelerations in car body. ride comforts and wheel rail forces were investigated.

  • PDF

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

Assessment of Grain Size Distribution in a Hammer-Forged Alloy 718 Disk (해머 단조된 Alloy 718 디스크의 결정립 분포 해석)

  • 염종택;박노광
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.250-256
    • /
    • 1997
  • Hammer forging was employed for Alloy 718 disk. The change in grain size during hot forging depends very much on dynamic recrystallization. The final grain size depends especially on the critical strain$($\varepsilon$_C)$/TEX> for dynamic recrystallization and Zener-Holloman parameter(Z). In this study, the critical strain$($\varepsilon$_C)$, the strain for 50 pct. recrystallization$($\varepsilon$_{0.5})$ and fraction of dynamic recrystallization(Xdyn) were measured by compression tests. FE simulation was also carried out ot predict the evolution of microstructure. The strain, strain rate and temperature distribution predicted by forging simulation can be effectively used to predict the distribution of grain sizes in the forged workpiece. The present model predictions showed an excellent agreement with the microstructural evolution of hammer-forged Alloy 718 disks.

  • PDF

Dynamic Index for a Versatile and Diverse Pilot Production Fab

  • Wu, I-Hung;Lin, Tzu-Yu;Chang, Chung-Shu;Lin, Chien-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.539-542
    • /
    • 2005
  • We report how to establish the dynamic index for production control in a pilot fabrication over versatile and diverse production environments. We used dynamic index provided by a simulation model to monitor production performance. When production control is abnormal, the information system prompts administrators to classify these abnormal situations. In addition, the trend over the operation index is continuously reviewed in short-term and long-term. This simulation model is handy at setting goal for a versatile and diverse pilot production fab.

  • PDF

Control Strategy of Smoothing Arc for DC Arc Furnace

  • Jung, Kyungsub;Suh, Yongsug;Lee, Yongjoong;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.354-355
    • /
    • 2013
  • Fundamental features of the arc stability in DC arc furnace of 720V/100kA/72MW have been investigated. Cassie-Mayr arc model has been employed and applied for the target dc arc furnace. In order to characterize the parameters of Cassie-Mayr arc model and the behavior of unstable arc dynamics, the advanced arc simulations of magneto-hydrodynamics (MHD) has been performed. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. From the results of MHD simulation, dc arc dynamic resistance is proposed to be an effective arc stability function reflecting the instability of dynamic arc behavior. The experimental result confirms the usefulness of proposed dynamic arc resistance as arc stability function. The proposed arc stability function can be regarded as an effective criterion for the overall power conversion system to maintain highly stable arcing operation leading to better productivity and reliability.

  • PDF

A Study on the Nonlinear Dynamic Modeling and Analysis of Damping Force Characteristics of Automotive Shock Absorber (차량용 충격흡수기의 비선형 동적거동 모델링 및 감쇠력 특성해석에 대한 연구)

  • 이춘태;곽동훈;정봉호;이지걸
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.104-111
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and comfort. In this study, a mathematical nonlinear dynamic model and computational method are introduced to study the flow and performance of shock absorber. The flow characteristics of components(piston and body valve) are investigated and applied to dynamic modeling of shock absorber to predict the damping force. The simulation results agree with the test data well. The shock absorber model proposed in this paper is applicable as a part of a full vehicle suspension simulation.

Dynamic Economic Dispatch for Microgrid Based on the Chance-Constrained Programming

  • Huang, Daizheng;Xie, Lingling;Wu, Zhihui
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1064-1072
    • /
    • 2017
  • The power of controlled generators in microgrids randomly fluctuate because of the stochastic volatility of the outputs of photovoltaic systems and wind turbines as well as the load demands. To address and dispatch these stochastic factors for daily operations, a dynamic economic dispatch model with the goal of minimizing the generation cost is established via chance-constrained programming. A Monte Carlo simulation combined with particle swarm optimization algorithm is employed to optimize the model. The simulation results show that both the objective function and constraint condition have been tightened and that the operation costs have increased. A higher stability of the system corresponds to the higher operation costs of controlled generators. These operation costs also increase along with the confidence levels for the objective function and constraints.