• 제목/요약/키워드: Dynamic Shortest Path

검색결과 98건 처리시간 0.03초

퍼지 최단경로기법을 이용한 부대이동로 선정에 관한 연구 (A Study on Decision to The Movement Routes Using fuzzy Shortest path Algorithm)

  • 최재충;김충영
    • 한국국방경영분석학회지
    • /
    • 제18권2호
    • /
    • pp.66-95
    • /
    • 1992
  • Shortest paths are one of the simplest and most widely used concepts in deterministic networks. A decison of troops movement route can be analyzed in the network with a shortest path algorithm. But in reality, the value of arcs can not be determined in the network by crisp numbers due to imprecision or fuzziness in parameters. To account for this reason, a fuzzy network should be considered. A fuzzy shortest path can be modeled by general fuzzy mathematical programming and solved by fuzzy dynamic programming. It can be formulated by the fuzzy network with lingustic variables and solved by the Klein algorithm. This paper focuses on a revised fuzzy shortest path algorithm and an application is discussed.

  • PDF

K-Shortest Path 알고리즘에 기초한 새로운 대역폭 보장 라우팅 알고리즘 (New Bandwidth Guaranteed Routing Algorithms based on K-Shortest Path Algorithm)

  • 이준호;이성호
    • 한국통신학회논문지
    • /
    • 제28권11B호
    • /
    • pp.972-984
    • /
    • 2003
  • 본 논문에서는 MPLS 네트워크에서 LSP 설정에 적용될 수 있는 새로운 대역폭 보장 온라인 라우팅 알고리즘들을 제안하고 기존의 알고리즘들과 함께 그 성능을 시뮬레이션을 통해서 평가한다. 제안된 방식은 기존의 WSP나 SWP 알고리즘을 K-shortest loopless path 알고리즘에 기초해서 확장시킨 형태를 가진다. 시뮬레이션을 통해서 accepted bandwidth, accepted request number 그리고 average path length라는 성능을 평가한 결과, 모든 노드들이 LSP 설정의 ingress나 egress 노드가 될 수 있는 상황에서 제안된 방식들이 전반적으로 우수한 성능을 보였는데 네트워크 부하가 큰 경우에는 특히, 최소 홉 경로에 기초한 방식들이 좋은 성능을 보임을 알 수 있다.

상태 공간 압축을 이용한 강화학습 (Reinforcement Learning Using State Space Compression)

  • 김병천;윤병주
    • 한국정보처리학회논문지
    • /
    • 제6권3호
    • /
    • pp.633-640
    • /
    • 1999
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like Q-learning and TD(Temporal Difference)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present COMREL(COMpressed REinforcement Learning) algorithm for finding the shortest path fast in a maze environment, select the candidate states that can guide the shortest path in compressed maze environment, and learn only the candidate states to find the shortest path. After comparing COMREL algorithm with the already existing Q-learning and Priortized Sweeping algorithm, we could see that the learning time shortened very much.

  • PDF

상황인식 기반 지능형 최적 경로계획 (Intelligent Optimal Route Planning Based on Context Awareness)

  • 이현정;장용식
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

동적 경로 선정을 위한 효율적인 탐색 기법 (An Efficient Search Mechanism for Dynamic Path Selection)

  • 최경미;박화진;박영호
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권3호
    • /
    • pp.451-457
    • /
    • 2012
  • 최근, ITS(Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 실시간 교통 정보를 이용하는 수요가 급증하면서, 경로탐색의 중요성이 더욱 가속화되고 있다. 그러나 기존의 경로탐색 알고리즘의 대부분은 최단경로 탐색을 위한 알고리즘으로, 정적인 거리 및 운행 시간정보를 사용하여 최적 경로를 계산하여 운전자에게 제공하기 때문에 교통량에 따라 동적으로 변하는 현 시점에서의 최적의 경로를 제공하지 못하는 문제가 있다. 따라서 본 논문에서는 이를 해결하기 위해 감속률과 거리에 기반한 동적 경로 선정을 위한 의미적 최단거리 알고리즘(Semantic Shortest Path algorithm with Reduction ratio & Distance, SSP_RD)과 감속률과 거리에 기반한 이동 경로 예측 모형화 및 동적 이동 경로 링크 맵을 제안한다.

GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network

  • Park, Hae-Woong;Won, Soo-Seob;Kim, So-Jung;Song, Joo-Seok
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.1529-1532
    • /
    • 2004
  • A Mobile Ad Hoc NETwork (MANET) is a collection of wireless mobile nodes that forms a temporary network without the need for any existing network infrastructure or centralized administration. Therefore, such a network is designed to operate in a highly dynamic environment due to node mobility. In mobile ad hoc network, frequent topological changes cause routing a challenging problem and without the complete view of the network topology, establishing the shortest path from the source node to the destination node is difficult. In this paper, we suggest a routing approach which utilizes location information to setup the shortest possible path between the source node and the destination node. Location information is obtained through Global Positioning System (GPS) and this geographical coordinate information of the destination node is used by the source node and intermediate nodes receiving route request messages to determine the shortest path to the destination from current node.

  • PDF

Distributed Optimal Path Generation Based on Delayed Routing in Smart Camera Networks

  • Zhang, Yaying;Lu, Wangyan;Sun, Yuanhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.3100-3116
    • /
    • 2016
  • With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.

목표지향적 강화학습 시스템 (Goal-Directed Reinforcement Learning System)

  • 이창훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.265-270
    • /
    • 2010
  • 강화학습(reinforcement learning)은 동적 환경과 시행-착오를 통해 상호 작용하면서 학습을 수행한다. 그러므로 동적 환경에서 TD-학습과 TD(${\lambda}$)-학습과 같은 강화학습 방법들은 전통적인 통계적 학습 방법보다 더 빠르게 학습을 할 수 있다. 그러나 제안된 대부분의 강화학습 알고리즘들은 학습을 수행하는 에이전트(agent)가 목표 상태에 도달하였을 때만 강화 값(reinforcement value)이 주어지기 때문에 최적 해에 매우 늦게 수렴한다. 본 논문에서는 미로 환경(maze environment)에서 최단 경로를 빠르게 찾을 수 있는 강화학습 방법(GORLS : Goal-Directed Reinforcement Learning System)을 제안하였다. GDRLS 미로 환경에서 최단 경로가 될 수 있는 후보 상태들을 선택한다. 그리고 나서 최단 경로를 탐색하기 위해 후보 상태들을 학습한다. 실험을 통해, GDRLS는 미로 환경에서 TD-학습과 TD(${\lambda}$)-학습보다 더 빠르게 최단 경로를 탐색할 수 있음을 알 수 있다.

수정된 전역 DWA에 의한 자율이동로봇의 경로계획 (Path Planning for Autonomous Mobile Robots by Modified Global DWA)

  • 윤희상;박태형
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.389-397
    • /
    • 2011
  • The global dynamic window approach (DWA) is widely used to generate the shortest path of mobile robots considering obstacles and kinematic constraints. However, the dynamic constraints of robots should be considered to generate the minimum-time path. We propose a modified global DWA considering the dynamic constraints of robots. The reference path is generated using A* algorithm and smoothed by cardinal spline function. The trajectory is then generated to follows the reference path in the minimum time considering the robot dynamics. Finally, the local path is generated using the dynamic window which includes additional terms of speed and orientation. Simulation and experimental results are presented to verify the performance of the proposed method.

다중무인운반차 시스템의 새로운 동적경로계획 알고리즘 : 비정지우선 우회 알고리즘 (A New Dynamic Routing Algorithm for Multiple AGV Systems : Nonstop Preferential Detour Algorithm)

  • 신성영;조광현
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.795-802
    • /
    • 2002
  • We present a new dynamic routing scheme for multiple autonomous guided vehicles (AGVs) systems. There have been so many results concerned with scheduling and routing of multiple AGV systems; however, most of them are only applicable to systems with a small number of AGVs under a low degree of concurrency. With an increased number of AGVs in recent applications, these AGV systems are faced with another problem that has never been occurred in a system with a small number AGVs. This is the stop propagation problem. That is, if a leading AGV stops then all the following AGVs must stop to avoid any collision. In order to resolve this problem, we propose a nonstop preferential detour (NPD) algorithm which is a new dynamic routing scheme employing an election algorithm. For real time computation, we introduce two stage control scheme and propose a new path searching scheme, k-via shortest path scheme for an efficient dynamic routing algorithm. Finally, the proposed new dynamic routing scheme is illustrated by an example.