• 제목/요약/키워드: Dynamic Recommendation Service

검색결과 24건 처리시간 0.018초

아시아 지역 농업기상정보 공유를 위한 인터넷기반 기상정보 연동시스템 (Internet-based RAMINS II as a Future Communication Framework for AgroMeteorological Information in Asia)

  • Byong-Lyol Lee;G. Ali Kamali;Wang Shili
    • 한국농림기상학회지
    • /
    • 제4권2호
    • /
    • pp.127-132
    • /
    • 2002
  • All the countries in RA II (Asia Region in WMO) welcome the establishment of a Web site dedicated to agricultural meteorology, because it is believed that the best way to improve and speed up the flow of information is the use of the Internet and the establishment of a Web site. In providing recommendation for the promotion and improvement of the AgroMeteorological service in RA II, a couple of key suggestions were proposed: (a) Exchanges of data and AgroMeteorological knowledge between member countries and between RAs, (b) Exchanges of experts between member countries as a necessary way to share the knowledge, and (c) Joint research between member countries to solve common problems in AgroMeteorological affairs. In order to meet the above requirements for RA II, an AgroMeteorological information network will be the most critical and dynamic aspect in sustainable agriculture in this region. In addition, the establishment of a Core AgroMeteorological station, recommended by CAgM of WMO, will require its own information sharing systems for communication among member countries. Inevitable use of information technologies (IT) such as information networks, databases, simulation models, GIS, and RS for regional impact assessment of environmental change on AgroEcosystem will be enforced. Thus, the regional Internet-based Agrometeorological information network has been in place since 1999, though all contributions to it have been volunteered by individuals, institutes, universities, etc.

실시간 SNS 데이터를 위한 Storm 기반 동적 태그 클라우드 (Storm-Based Dynamic Tag Cloud for Real-Time SNS Data)

  • 손시운;김다솔;이수정;길명선;문양세
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권6호
    • /
    • pp.309-314
    • /
    • 2017
  • 일반적으로 SNS (social network service) 데이터는 정형, 비정형 데이터가 섞여 빠르게 생성되는 빅데이터의 특성을 갖기 때문에 실시간 수집/저장/분석에 많은 어려움이 있다. 본 논문에서는 이러한 SNS 데이터의 분석에 활용할 수 있는 Apache Storm 기반 실시간 동적 데이터 시각화 기술을 제안한다. Storm은 대표적인 빅데이터 기술 중 하나로, 실시간으로 수집되는 데이터를 분산 환경에서 처리 및 분석하는 소프트웨어 플랫폼이다. 본 논문은 Storm을 사용하여 빠르게 발생하는 트위터(Twitter) 데이터를 수집 및 집계하고, 태그 클라우드를 통해 그 결과를 동적으로 표현하고자 한다. 이를 위해, 사용자가 요구하는 키워드를 입력받고 해당 키워드를 통한 시각화 결과를 실시간으로 확인할 수 있는 웹 인터페이스를 설계 및 구현한다. 또한, 각각의 태그 클라우드 결과를 비교하여 올바로 시각화되었는지 확인한다. 본 연구를 통해, 사용자는 관심있는 주제가 SNS에서 어떻게 변화하고 있는지 직관적으로 판단할 수 있게 되며, 시각화 결과는 주제별 트렌드 분석, 고객 니즈 파악 등 다른 서비스에도 활용이 가능하다.

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

사고가 시각을 바꾼다: 조절 초점에 따른 소비자 감성 기반 웹 스타일 평가 모형 및 추천 알고리즘 개발 (Individual Thinking Style leads its Emotional Perception: Development of Web-style Design Evaluation Model and Recommendation Algorithm Depending on Consumer Regulatory Focus)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.171-196
    • /
    • 2018
  • 본 연구는 디자인 영역 중 웹 스타일에 대해서 소비자 감성과 만족과의 관계를 연구했다. 기존 웹 스타일 연구들은 웹의 레이아웃과 구조도 등과 색상 등이 감성에 미치는 영향에서 연구했다. 본 연구는 기존 연구들과 차별되게 웹의 구성 요소를 배제하고 소비자의 감성 지표만을 갖고 소비자 만족과의 관계를 분석했다. 분석을 위해 검증을 위해 소비자 204명을 대상으로 40개 웹 스타일 테마를 선정, 각 소비자에게 4개씩 평가하도록 하였다. 소비자에게 평가하도록 한 감성 형용사는 18개의 대비되는 쌍을 갖는 감성 형용사로 구성하였고, 요인 분석을 통해 상위 감성 지표를 추출했다. 각 감성 지표들은 '부드러움', '모던함', '명확함', '꽉 참' 이었으며, 감성지표들이 소비자 만족에 미치는 영향이 다를 것으로 판단하여 가설을 수립했다. 분석 결과에 따라 가설 1과 2, 3은 채택되었으며, 가설 4의 경우는 기각되었다. 가설 4의 경우 기각되었지만 정의 방향이 아닌 부의 방향으로 유의한 것으로 나타났다. 이때, 조절 초점 성향이 감성이라는 정보처리 과정에서 소비자 만족에 미치는 영향이 다를 것으로 판단했다. 조절 초점 성향은 조직 행동 및 의사결정에 영향을 주기도 하며, 정치, 문화, 윤리적 판단 및 행동은 물론 광범위적 심리적 문제와 사고 프로세스, 감정적 반응에도 영향을 미친다. 때문에 각 감성 지표에 대한 조절 초점 간 차이를 확인할 필요성이 있고, 각 감성 지표에 대한 세부 가설을 수립했다. 세부 가설을 검증하기 위해 조절 회귀 분석을 수행했다. 분석 결과 가설 5는 부분적으로 지지됐고, 가설 5.3만 지지되었고, 5.4의 경우 기각되었지만 가설과의 반대 방향으로 지지되었다. '명확함'의 경우 향상 초점이 소비자 만족에 더 큰 영향을 보였고, 예방 초점일수록 '꽉 참'을 더 선호한 것으로 나타났다. 분석 결과를 바탕으로 조절 초점 성향을 향상, 예방, 중간 성향으로 3집단으로 구분, 소비자 감성 기반으로 웹 스타일에 대한 추천을 할 수 있는 알고리즘을 개발했다.