Journal of Information Technology Applications and Management
/
제26권5호
/
pp.57-65
/
2019
Recommendation Systems are information technologies that E-commerce merchants have adopted so that online shoppers can receive suggestions on items that might be interesting or complementing to their purchased items. These systems stipulate valuable assistance to the user's purchasing decisions, and provide quality of push service. Traditionally, Recommendation Systems have been designed using a centralized system, but information service is growing vast with a rapid and strong scalability. The next generation of information technology such as Cloud Computing and Big Data Environment has handled massive data and is able to support enormous processing power. Nevertheless, analytic technologies are lacking the different capabilities when processing big data. Accordingly, we are trying to design a conceptual service model with a proposed new algorithm and user adaptation on dynamic recommendation service for big data environment.
As the growth of developing Islamic countries, Muslims are into the world. The most important thing for Muslims to purchase food, ingredient, cosmetics and other products are whether they were certified as 'Halal'. With the increasing number of Muslim tourists and residents in Korea, Halal restaurants and markets are on the rise. However, the service that provides information on Halal restaurants and markets in Korea is very limited. Especially, the application of recommendation system technology is effective to provide Halal restaurant information to users efficiently. The profiling of Halal restaurant information should be preceded by design of recommendation system, and design of recommendation algorithm is most important part in designing recommendation system. In this paper, an Intelligent Recommendation Service system for offering Halal food (IRSH) based on dynamic profiles was proposed. The proposed system recommend a customized Halal restaurant, and proposed recommendation algorithm uses hybrid filtering which is combined by content-based filtering, collaborative filtering and location-based filtering. The proposed algorithm combines several filtering techniques in order to improve the accuracy of recommendation by complementing the various problems of each filtering. The experiment of performance evaluation for comparing with existed restaurant recommendation system was proceeded, and result that proposed IRSH increase recommendation accuracy using Halal contents was deducted.
International Journal of Fuzzy Logic and Intelligent Systems
/
제7권3호
/
pp.165-170
/
2007
Recommendation systems provide users with proper services using context information being input from many sensors occasionally under ubiquitous computing environment. But in case there isn't sufficient context information for service recommendation in spite of much context information, there can be problems of resulting in inexact result. In addition, in the quantification step to use context information, there are problems of classifying context information inexactly because of using an absolute classification course. In this paper, we solved the problem of lack of necessary context information for service recommendation by using dynamic profile information. We also improved the problem of absolute classification by using a relative classification of context information in quantification step. As the result of experiments, expectation preference degree was improved by 7.5% as compared with collaborative filtering methods using an absolute quantification method where context information of P2P mobile agent is used.
Dessert Ateliers (DA) are small shops that sell high-end homemade desserts such as macaroons, cakes, and cookies, and their popularity is increasing according to the emergence of small luxury trends. Even though each DA sells the same kinds of desserts, they are differentiated by the personality of their pastry chef; thus, there is a need to purchase desserts online that customers cannot see and purchase offline, and thus dessert e-commerce has emerged. However, it is impossible for customers to identify all the information of each DA and clearly understand customers' preferences when buying desserts through the dessert e-commerce. When a dessert e-commerce service provides a DA recommendation service, customers can reduce the time they hesitate before making a decision. Therefore, this paper proposes two kinds of DA recommendation method: a clustering-based recommendation method that calculates the similarity between customers' content and DAs and a dynamic weighting-based recommendation method that trains the importance of decision factors considering customer preferences. Various experiments were conducted using a real-world dataset to evaluate the performance of the proposed methods and it showed satisfactory results.
본 연구에서는 온톨로지를 기반으로 개인의 선호도에 따라 여행지를 추천해 주는 시스템을 제안하고 구현하였다. 사용자 개인의 선호도를 파악하기 위해 사용자의 프로파일, 어플리케이션 내의 검색 정보, 웹 검색 정보와 페이스북 정보 등을 활용한다. 또한 실험적인 구현 사례로 시범 서비스 국가인 영국에 대하여 여행지 정보 데이터베이스를 개념과 관계를 중심으로 온톨로지를 구축하고 이를 중심으로 개인 선호도에 따라 여행지를 추천한다. 이 시스템의 개인화된 추천 방식을 이용함으로써 사용자는 자신이 관심 있는 여행지를 추천받아 이를 중심으로 여행 계획을 수립할 수 있다.
유비쿼터스 컴퓨팅 환경에서는 정적 및 동적인 상황 정보의 양이 무한대로 늘어나게 됨에 따라, 추천서비스에 있어서 정보 과부하 문제와 프라이버시 침해 문제가 중요한 문제로 대두되고 있다. 따라서 본 연구에서는 이러한 문제점을 해결하기 위하여 서버와의 교신 없이 고객 중심의 자체적인 정보처리와 고객들간 직접 커뮤니케이션을 통하여, 효율적이고 안전한 정보 획득이 가능하도록 P2P방식의 협업을 통하여 선호도가 유사한 다른 고객들의 상품에 대한 평가정보가 전달되는 추천서비스를 제안하였다. 제안한 추천방식은 협업필터링의 기본 법칙을 따르고 있지만, 현재 센서 네트워크에 접속해 있는 전체 고객를 대상으로 이웃 고객을 탐색하는 방법대신에 목표 고객 주위의 가까운 이웃을 지역적으로 탐색하는 방법을 채택하여 성능의 저하없이 유비쿼터스 컴퓨팅 환경에서 실시간 추천이 가능하도록 하였다. 또한 유비쿼터스 컴퓨팅 환경에서 적용가능한 프로토타입의 통합 네트워크 시스템의 구현을 통해 실세계 상점에서 유비쿼터스 컴퓨팅 기술의 활용 가능성을 제시하였다. 마지막으로 실제 모바일 회사의 데이터를 이용한 실험을 통하여 그 특징을 제시함으로써 향후 유비쿼터스 서비스 애플리케이션의 범용적인 추천모델을 제공하고자 한다.
웹 서비스 기술이 각광받고 그 사용이 확대됨에 따라, 복잡하고 동적인 서비스 환경에서 사용자에게 적절한 서비스를 추천하는 방법에 대한 연구가 활발히 진행되고 있다. 또한 효과적인 서비스 매쉬업 개발을 위해 서비스를 추천하는 방법이 제안되었으나, 기존의 매쉬업 단위 서비스 추천 방식은 여러 매쉬업 개발자의 성향을 분석하여 그에 맞는 서비스를 추천하지는 못하였다. 이에 본 논문에서는 매쉬업 개발자들이 만든 서비스 매쉬업의 집합들과 추천 대상 개발자의 매쉬업 집합 사이의 유사도를 측정하고 유사한 매쉬업 집합들로부터 서비스를 추천하는 방법을 제안한다. 그리고 ProgrammableWeb에서 수집된 매쉬업 데이터로 실험한 결과를 비교 분석하여 본 연구의 방법이 사용자 기반 협업 필터링 알고리즘보다 높은 정확도와 재현율을 보임을 확인하였다.
Users are able to use the information and service more free than previous wire network due to development of wireless network and device. For this reason, various studies on ubiquitous networks have been conducted. Various contexts brought in this ubiquitous environment, have recognized user's action through sensors. This results in the provision of better services. Because services exist in various places in ubiquitous networks, the application has the time of services searching. In addition, user's context is very dynamic, so a method needs to be found to recommend services to user by context. Therefore, techniques for reducing the time of service and increasing accuracy of recommendation are being studied. But it is difficult to quickly and appropriately provide large numbers of services, because only basic context information is stored. For this reason, we suggest DUPS(Dimension User Profile System), which stores location, time, and frequency information of often used services. Because previous technique used to simple information for recommending service without predicting services which is going to use on future, we can provide better service, and improve accuracy over previous techniques.
The Internet of Things(IoT) is a new promising technology made from a variety of technology. The IoT links the objects or people, then enabling anytime, anywhere connectivity for anything and not only for anyone. Social networking services have changed the way people communicate. Recently, new research challenges in many areas of Internet of things and social networking services are fired. In this paper, we propose things recommendation method using social relationship in social Internet of Things. We study previous researches about social network service, IoT, and social IoT. We proposed SIoT_FW(Social IoT Friendship Weight) using static and a dynamic social friendship weight. Also, our method considers four social relationships (Ownership Object Relationship, Co-Location Object Relationship, Social Object Relationship, Parental Object Relationship). We presents a music device scenario using our proposed method.
사물인터넷 기술이 발전되면서 인터넷을 통해 상호 연결되는 일상의 사물들이 증가하고 있다. 또한 연결된 사물들을 활용한 많은 스마트 서비스들이 개발되고 있다. 사용자 주변의 사물들 중 거울은 생활 속에서 다양한 역할을 한다는 점에서 광범위한 기능 적용과 서비스 확장이 가능하다. 최근 특정 장소의 특정 목적과 관심사를 가진 사람들이 모인 곳에 설치된 다양한 스마트미러 상품들이 출시되고 있다. 그러나 대부분 제공되는 정보가 한정적이라는 제한사항이 있다. 이를 개선하기 위해 본 논문에서는 사용자 맞춤형 서비스가 가능한 스마트미러를 설계하고 구현한다. 제한하는 스마트미러는 기존 인터넷 서비스에서 제공하고 있는 정보를 활용하여 사용자에게 실시간 교통 정보와 뉴스, 일정, 날씨 등의 생활 정보를 제공할 수 있다. 또한 스마트미러 사용자의 이용 내역을 기반으로 추천 서비스를 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.