• Title/Summary/Keyword: Dynamic Pressure

Search Result 2,441, Processing Time 0.025 seconds

Dynamic tensile behavior of PMMA (PMMA의 동적 인장 거동)

  • Lee, Ouk-Sub;Kim, Myun-Soo;Hwang, Si-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.395-400
    • /
    • 2001
  • The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, has been used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the PMMA under high strain rate tensile loading are determined using SHPB technique.

  • PDF

A Three-dimensional Biomechanical Model for Numerical Simulation of Dynamic Pressure Functional Performances of Graduated Compression Stocking (GCS)

  • Liu, Rong;Kwok, Yi-Lin;Li, Yi;Lao, Terence-T;Zhang, Xin;Dai, Xiao-Qun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.389-397
    • /
    • 2006
  • The beneficial effects of graduated compression stockings (GCS) in prophylaxis and treatment of venous disorders of human lower extremity have been recognized. However, their pressure functional performances are variable and unstable in practical applications, and the exact mechanisms of action remain controversial. Direct surface pressure measurements and indirect material properties testing are not enough for fully understanding the interaction between stocking and leg. A three dimensional (3D) biomechanical mathematical model for numerically simulating the interaction between leg and GCS in dynamic wear was developed based on the actual geometry of the female leg obtained from 3D reconstruction of MR images and the real size and mechanical properties of the compression stocking prototype. The biomechanical solid leg model consists of bones and soft tissues, and an orthotropic shell model is built for the stocking hose. The dynamic putting-on process is simulated by defining the contact of finite relative sliding between the two objects. The surface pressure magnitude and distribution along the different height levels of the leg and stress profiles of stockings were simulated. As well, their dynamic alterations with time processing were quantitatively analyzed. Through validation, the simulated results showed a reasonable agreement with the experimental measurements, and the simulated pressure gradient distribution from the ankle to the thigh (100:67:30) accorded with the advised criterion by the European committee for standardization. The developed model can be used to predict and visualize the dynamic pressure and stress performances exerted by compression stocking in wear, and to optimize the material mechanical properties in stocking design, thus, helping us understand mechanisms of compression action and improving medical functions of GCS.

Experimental Study on Simplex Swirl Injector Dynamics with Varying Geometry

  • Chung, Yun-Jae;Khil, Tae-Ock;Yoon, Jung-Soo;Yoon, Young-Bin;Bazarov, V.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The effects of swirl chamber's diameter and length on injector's dynamic characteristics were investigated through an experimental study. A mechanical pulsator was installed in front of the manifold of a swirl injector which produces pressure oscillations in the feed line. Pressure in the manifold, liquid film thickness in the orifice and the pressure in the orifice were measured in order to understand the dynamic characteristic of the simplex swirl injector with varying geometry. A direct pressure measuring method (DPMM) was used to calculate the axial velocity of the propellant in the orifice and the mass flow rate through the orifice. These measured and calculated values were analyzed to observe the amplitude and phase differences between the input value in the manifold and the output values in the orifice. As a result, a phase-amplitude diagram was obtained which exhibits the injector's response to certain pressure fluctuation inputs. The mass flow rate was calculated by the DPMM and measured directly through the actual injection. The effect of mean manifold pressure change was insignificant with the frequency range of manifold pressure oscillation used in this experiment. Mass flow rate was measured with the variation of injector's geometries and amplitude of the mass flow rate was observed with geometry and pulsation frequency variation. It was confirmed that the swirl chamber diameter and length affect an injector's dynamic characteristics. Furthermore, the direction of geometry change for achieving dynamic stability in the injector was suggested.

Change of Static and Dynamic Foot Pressure after Trunk Stabilization Exercises in Children with Spastic Diplegic Cerebral Palsy (체간 안정화 운동 후 경직형 양하지 뇌성마비 아동의 정적, 동적 족저압의 변화)

  • Yeom, Ju-No;Lim, Chae-Gil
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.4
    • /
    • pp.274-279
    • /
    • 2014
  • Purpose: The aim of this study was to determine the change of static and dynamic foot pressure on trunk stabilization exercise in children with spastic diplegic cerebral palsy. Methods: This study examined five male children participants ages 10~14 years old with spastic diplegic cerebral palsy. All subjects participated in a 6-week sling exercise program for trunk stabilization; the exercise was performed three times per week and each session lasted 50 minutes. The subjects were measured for static and dynamic foot pressure and bilateral symmetry of both feet before and after the trunk stabilization exercise. Results: The static foot pressure increased significantly before and after the trunk stabilization exercise (left foot: before $0.41{\pm}0.02%BW/cm^2$ after $0.79{\pm}0.02%BW/cm^2$, right foot: before $0.14{\pm}0.03%BW/cm^2$, after $0.43{\pm}0.44%BW/cm^2$) (p<0.05) and bilateral symmetry of both feet increased (before $0.27{\pm}0.18%BW/cm^2$, after $0.37{\pm}0.05%BW/cm^2$) with more weight shift on left foot than right foot, but was not statistically significant (p>0.05). The dynamic foot pressure increased (left foot: before $2.58{\pm}0.44%BW/cm^2$, after $3.40{\pm}0.31%BW/cm^2$, right foot: before $2.75{\pm}0.19%BW/cm^2$, after $3.26{\pm}0.18%BW/cm^2$) with more weight shift on right foot than left foot, but was not statistically significant (p>0.05), and bilateral symmetry of both feet decreased (before $0.31{\pm}0.36%BW/cm^2$, after $0.13{\pm}0.20%BW/cm^2$) (p<0.05). Conclusion: The findings of this study indicated that the trunk stabilization exercise has a positive impact on static and dynamic foot pressure in children with spastic diplegic cerebral palsy.

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.

Reexamination and Derivation of Empirical Dynamic Model for a Hydraulic Bleed-Off Circuit (유압 블리드-오프 회로의 특성 재검토 및 실험적 동특성 모델링)

  • Jeong, Heon-Sul;Lee, Gwang-Heon;Kim, Hyeong-Ui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1552-1564
    • /
    • 2002
  • Meter-in, meter-out and bleed-off circuits are widely utilized in order to adjust the speed of a hydraulic actuator by using a flow control valve and in order to regulate the pressure of a hydraulic volume by using a simple on-off valve. In these circuits, a relief valve serves either to maintain constant system pressure or to protect the system from over-pressure loading. The relief valve of a bleed-off circuit is the second case frequently undergoing on-off action during operation. It makes the analysis of the pressure control characteristics of the circuit highly difficult. In this paper, steady-state flow rate, pressure, heat loss and efficiency of the three circuits are reexamined and basic experiments far obtaining the characteristics of a pump and relief valve are conducted. Finally, simple empirical first-order dynamic models of decreasing and increasing pressure were separately proposed and verified by comparison with experiment. As the result, the basis for the theoretical analysis of the pressure control characteristics of a bleed-off circuit using a simple on-off valve is established.

Analysis of Dynamic Earth Pressure on Piles in Liquefiable Soils by 1g Shaking Table Tests (1g 진동대 실험을 이용한 액상화 지반에 근입된 말뚝에 작용하는 동적 토압 분석)

  • Han, Jin-Tae;Choi, Jung-In;Kim, Sung-Hwan;Yoo, Min-Taek;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.87-98
    • /
    • 2011
  • In this study, the magnitude and phase variation of dynamic earth pressure acting on a pile in liquefiable soils were analyzed using a series of 1g shaking table tests. In the case of a pile in dry sand, the value of the dynamic earth pressure was the highest near the surface due to the inertia force of the upper load on the pile and it decreased as the depth of the pile got lower. On the other hand, for a pile in liquefiable sand, the magnitude and shape of the dynamic earth pressure were similar to those of the excess pore pressure and was largely affected by the deformation of soils. Furthermore, the inertia force of the upper load and the dynamic earth pressure acted in opposite directions in cases of dry sand and saturated sand where low excess pore pressure had developed. However, after liquefaction, those force components near surface acted unfavorably in the same direction. Finally, the Westergaard’s solution was modified and proposed as a method to evaluate the magnitude of dynamic earth pressure acting on a pile during liquefaction.

Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

  • Choi, C.R.;Kim, K.C.;Lee, D.Y.;Kim, J.H.;Lee, E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.113-128
    • /
    • 2008
  • Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum $(Dst_{min})$ is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ${\geq}50%\;or\;{\geq}3nPa$ within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through $Dst_{min}$, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. $(i){\sim}$ 81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is ${\sim}$ 4.5 pressure enhancement events per storm and ${\sim}$ 0.15 pressure enhancement events per hour. (ii) The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii) Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv) A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF $B_y$ and/or $B_z$: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either $|{\Delta}B_z|>2nT\;or\;|{\Delta}B_y|>2nT$. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

Statistical study of solar wind dynamic pressure enhancements during geomagnetic storms: Preliminary results

  • Baek, Ji-Hye;Lee, Dae-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.93-93
    • /
    • 2004
  • We have examined the solar wind dynamic pressure enhancements during geomagnetic storm main phase. The Dst index has been used to identify more than 100 geomagnetic storms which occurred in the time interval of 1997 to 2001. We have selected only the events having the minimum Dst value less than -50 nT. In order to identify the pressure impact, we have looked at the low latitude ground H data as well as the solar wind pressure data themselves. (omitted)

  • PDF

Dynamic Behavior of Sand Bed under Oscillating Water Pressure

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • Under the attack of storm waves, there are many destructions of coastal structures in the forms of sinking and sliding. There types of destructions will be in close relation to the dynamic behavior of sand bed around the structures. Form this point of view, in this pear, we investigate the characteristics of the pore water pressure and effective stresses in the highly saturated sand bed under oscillating water pressure theoretically. The results indicate that the oscillating water pressure induce the notable drop of strength of and bed around the structure under certain condition.

  • PDF