• Title/Summary/Keyword: Dynamic Pressure

Search Result 2,445, Processing Time 0.031 seconds

Application of a Non-Hydrostatic Pressure Model with Dynamic Boundary Condition to Free Surface Flow (동역학적 경계조건을 갖는 동수압 모형의 자유수면흐름에의 적용)

  • Lee, Jin-Woo;Jeong, Woo-Chang;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • In this study, a three-dimensional non-hydrostatic pressure model based on a normalized vertical coordinate system for free surface flows is presented. To strongly couple the free surface and non-hydrostatic pressure with the momentum equations, a double predictor-corrector method is employed. The study is especially focused on implementing the dynamic boundary condition (a zero pressure condition) at the free surface with ignoring of the atmospheric pressure. It is shown that the boundary condition can be specified easily with a slight modification to existing models.

A Fundamental Study for Time History Modeling of Fluid Impact Pressure (유체 충격압력 시계열의 모델링에 관한 기초 연구)

  • Nho, In-Sik;Lee, Jae-Man;Yeom, Cheol-Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.242-247
    • /
    • 2010
  • To consider effects of essential parameters of water impact pressure on dynamic structural responses of bow bottom structures, a parametric study for a ship bottom panel is carried out. The idealized pressure time history models were assumed by triangular and rectangular shapes in time domain. The main loading parameters are duration time and peak pressure value maintaining the same impulse value. The structural models for local bottom stiffened panels of a container ship are analysed. The natural frequency analysis and transient dynamic response analysis are performed using MSC/NASTRAN. Added mass effects of contacting water are considered and the pressure distributions are assumed to be uniform in the whole water contacting surface. The effects of loading parameters on the structural responses, especially maximum displacements, are considered. Besides the peak pressure value, effects of duration time correlated with natural frequencies are thought to be the important parameters.

The Effects of Foot Intrinsic Muscle and Tibialis Posterior Strengthening Exercise on Plantar Pressure and Dynamic Balance in Adults Flexible Pes Planus

  • Lee, Da-bee;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.23 no.4
    • /
    • pp.27-37
    • /
    • 2016
  • Background: In previous studies regarding flexible pes planus, Foot orthosis, special shoes have been used as interventions for correcting malalignment and intrinsic muscles strengthening exercise have been regarded as interventions for foot function and supporting medial longitudinal arch during walking. However, some recent studies reported that strengthening extrinsic muscles as well as intrinsic muscles is more effective and active intervention for flexible pes planus. In particular, the tibialis posterior muscle of foot extrinsic muscles plays essential roles in maintaining the medial longitudinal arch during dynamic weight bearing and balance. In addition this muscle acts longer than other supination muscles during the stance phase in the gait cycle. Objects: This study aimed to investigate the effect of foot intrinsic muscle and tibialis posterior muscle strengthening exercise for plantar pressure and dynamic balance in adults with flexible pes planus. Methods: 16 young flexible pes planus adults (7 males, 9 females) were recruited and were randomized into two groups. The experimental group performed foot intrinsic muscle and tibialis posterior muscle strengthening training, the control group performed only foot intrinsic muscle strengthening training. All groups received strengthening training for 30 minutes five times a week for six weeks. Results: The experimental group had significantly lower plantar pressure of medial heel area than the control group in stand (p<.05). The experimental group had significantly higher dynamic balance ability than control group (p<.05). Conclusion: The results of this study provide evidence to suggest that foot intrinsic muscle and tibialis posterior muscle of extrinsic muscle strengthening exercises may improve plantar pressure distribution and dynamic balance ability in adults with flexible pes planus.

Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure (동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰)

  • HAM JUH-HYEOK;KANG BYUNG-YOON;CHOO KYUNG-HOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

Nonlinear dynamic properties of dynamic shear modulus ratio and damping ratio of clay in the starting area of Xiong'an New Area

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.97-115
    • /
    • 2024
  • In this paper, a database consisting of the dynamic shear modulus ratio and damping ratio test data of clay obtained from 406 groups of triaxial tests is constructed with the starting area of Xiong'an New Area as the research background. The aim is to study the nonlinear dynamic properties of clay in this area under cyclic loading. The study found that the effective confining pressure and plasticity index have certain influences on the dynamic shear modulus ratio and damping ratio of clay in this area. Through data analysis, it was found that there was a certain correlation between effective confining pressure and plasticity index and dynamic shear modulus ratio and damping ratio, with fitting degree values greater than 0.1263 for both. However, other physical indices such as the void ratio, natural density, water content and specific gravity have only a small effect on the dynamic shear modulus ratio and the damping ratio, with fitting degree values of less than 0.1 for all of them. This indicates that it is important to consider the influence of effective confining pressure and plasticity index when studying the nonlinear dynamic properties of clays in this area. Based on the above, prediction models for the dynamic shear modulus ratio and damping ratio in this area were constructed separately. The results showed that the model that considered the combined effect of effective confining pressure and plasticity index performed best. The predicted dynamic shear modulus ratio and damping ratio closely matched the actual curves, with approximately 88% of the data falling within ±1.3 times the measured dynamic shear modulus ratio and approximately 85.1% of the data falling within ±1.3 times the measured damping ratio. In contrast, the prediction models that considered only a single influence deviated from the actual values, particularly the model that considered only the plasticity index, which predicted the dynamic shear modulus ratio and the damping ratio within a small distribution range close to the average of the test values. When compared with existing prediction models, it was found that the predicted dynamic shear modulus ratio in this paper was slightly higher, which was due to the overall hardness of the clay in this area, leading to a slightly higher determination of the dynamic shear modulus ratio by the prediction model. Finally, for the dynamic shear modulus ratio and damping ratio of the engineering site in the starting area of Xiong'an New Area, we confirm that the prediction formulas established in this paper have high reliability and provide the applicable range of the prediction model.

The Study on the Effects of Maitland Mobilization and MWM for Range of Motion, Static and Dynamic Balance, Plantar Pressure, Gait Ability Performed on the Ankle Joint of Hemiplegic Patients (편마비 환자의 발목관절에 시행된 메이틀랜드 관절가동술과 움직임을 동반한 관절가동술이 관절가동범위, 정적 및 동적 균형, 족저압, 보행 능력에 미치는 영향에 관한 연구)

  • Lee, Jun-yong;Sim, Hyun-po;Choi, Yul-jung
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2022
  • Background: This study aimed to investigate the effect of maitland mobilization and mobilization with movement (MWM) applied to the ankle joint on ankle dorsiflexion range of motion (ROM), static and dynamic balance, plantar pressure, and gait ability. Methods: A total of 24 individuals were assigned to either the maitland mobilization group (n=12) or the MWM group (n=12). Dorsiflexion ROM, static and dynamic balance, plantar pressure, 10-meter walk test were measured before and 4 weeks after the intervention. Results: Both groups showed a significant difference in the evaluation after 4 weeks as the dorsiflexion ROM of the ankle increased (p<.05), and the sway length and sway area indicating static balance decreased (p<.05). Furthermore, the movement area showing dynamic balance showed a significant increase (p<.05), the plantar pressure difference between both feet significantly decreased (p<.05). In the 10-meter walk test, there was a significant difference as the time decreased (p<.05). However, no significant difference between the two groups was observed (p>.05). Conclusion: According to the results of this study where, maitland mobilization and MWM were applied to the ankle joint of hemiplegic patients for 4 weeks, we found no difference between the two groups. However, each technique was found to be effective for dorsiflexion ROM, static and dynamic balance, plantar pressure, and gait.

Comparison Study of Static and Dynamic Plantar Foot Pressure between Chronic Low Back Pain Patients and Normal Adults (만성 요통 환자와 정상 성인의 정적, 동적 족저압 비교 연구)

  • Lee, Jeon-Hyeong;Kim, Gi-Chul;Seo, Hyun-Kyu;Park, Youn-Ki
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • Background: The purposed of this study is to examine the static and dynamic plantar foot pressure in chronic low back pain patients and normal adults. Methods: The subjects were divided into a group of 30 patients with chronic low back pain and a control group of 30 healthy persons. While static posture and dynamic posture at comfortable walking speeds, the low back pain group and the control group measured their plantar foot pressure and the trajectory of their center of pressure (COP) using the Matscan(R) system. Independent t-tests were measured to compare differences in plantar foot pressure characteristics between the left side and right side of the low back pain group and the control group. Results: In the comparison of differences in plantar foot pressure characteristics between the left side and right side of the low back pain group and the control group, the anteroposterior (AP) displacement of COP showed significant differences (p<.05). Although the low back pain group and the control group did not show any significant differences in leg length, weight distribution, mediolateral (ML) displacement of COP, static contract area, dynamic contract areas (p>.05), increases in the contract area values were shown in the hind foot in general. Conclusion: In this study, it was shown that patients with chronic low back pain were walking with short AP displacement of the COP as a compensatory action to avoid pain.

  • PDF

A Study on the Dynamic Stress Analysis of an Engine Block using Flexible-body Dynamic Analysis (유연체 동역학적 해석을 이용한 엔진블록의 동응력 해석에 관한 연구)

  • Son, Chang-Su;Cheon, Ho-Jeong;Seong, Hwal-Gyeong;Yoon, Keon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.805-813
    • /
    • 2011
  • The dynamic stress of the diesel engine block is analyzed by using flexible-body dynamic analysis. Multiple loadings including the pressure load due to gas combustion, thermal load, and dynamic load are considered. Thermal load is assumed constant, however, pressure load and dynamic load are treated as time dependent. The present work is focused on the dynamic stress analysis, especially on finding critical points of the engine block. The analysis model includes four parts - engine block, generator, bed, and mounts. On the other hand, crank shaft, pistons, and main bearings are excluded from the model. However, their dynamic effects are applied by dynamic forces, obtained in the separate analysis. Dynamic stress is found by using flexible body dynamic analysis, and compared to the measured data.

Study of the Dynamic Characteristics of a High-Pressure Labyrinth Seal Considering Rotor Whirling (회전체 Whirl 운동을 고려한 고압용 래비린스 씰의 동적 특성에 관한 연구)

  • Kim, Chae Sil;Lee, Kyung Jin;Shin, Min Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.713-718
    • /
    • 2015
  • This article describes the calculation procedure for the dynamic characteristics of a high-pressure labyrinth seal wherein the friction force and rotor whirling force are considered; SFCP, the commercial code developed by Lee and two colleagues, is used in the procedure. The simulation results were reviewed in comparison to those of the experiments provided by Benckert; additionally, the SFCP simulation results were verified using the CFD analysis presented by Toshio Hirano. This calculation procedure may therefore be applied to the dynamic characteristics of the labyrinth seals of high-pressure turbo machinery.

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.