• Title/Summary/Keyword: Dynamic Precipitation

Search Result 96, Processing Time 0.024 seconds

Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석)

  • Kim, Byeong-Hee;Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.

Dynamics and Characteristics of Regional Extreme Precipitation in the Asian Summer Monsoon (아시아 여름 몬순에서의 지역별 극한 강수의 역학과 특성)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim;Hyoeun Oh
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.257-271
    • /
    • 2024
  • In 2023, the World Meteorological Organization released a report on climate conditions in Asia, highlighting the region's high vulnerability to floods and the increasing severity and frequency of extreme precipitation events. While previous studies have largely concentrated on broader-scale phenomena such as the Asian monsoon, it is crucial to investigate the substantial characteristics of extreme precipitation for a better understanding. In this study, we analyze the spatiotemporal characteristics of extreme precipitation during summer and their affecting factors by decomposing the moisture budgets within specific Asian regions over 44 years (1979~2022). Our findings indicate that dynamic convergence terms (DY CON), which reflect changes in wind patterns, primarily drive extreme rainfall across much of Asia. In southern Asian sub-regions, particularly coastal areas, extreme precipitation is primarily driven by low-pressure systems, with DY CON accounting for 70% of the variance. However, in eastern Asia, both thermodynamic advection and nonlinear convergence terms significantly contribute to extreme precipitation. Notably, on the Korean Peninsula, thermodynamic advection plays an important role, driven by substantial moisture carried by strong southerly mean flow. Understanding these distinct characteristics of extreme rainfall across sub-regions is expected to enhance both predictability and resilience.

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

Dynamic Precipitation and Substructure Stablility of Cu Alloy during High Temperature Deformation

  • Han, Chang-Suk;Choi, Dong-Nyeok;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.343-348
    • /
    • 2019
  • Structural and mechanical effects of the dynamical precipitation in two copper-base alloys have been investigated over a wide range of deformation temperatures. Basing upon the information gained during the experiment, also some general conclusion may be formulated. A one concerns the nature of dynamic precipitation(DP). Under this term it is commonly understood decomposition of a supersaturated solid solution during plastic straining. The process may, however, proceed in two different ways. It may be a homogeneous one from the point of view of distribution and morphological aspect of particles or it may lead to substantial difference in shape, size and particles distribution. The effect is controlled by the mode of deformation. Hence it seems to be reasonable to distinguish DP during homogeneous deformation from that which takes place in heterogeneously deformed alloy. In the first case the process can be analyzed solely in terms of particle-dislocation-particle interrelation. Much more complex problem we are facing in heterogeneously deforming alloy. Deformation bands and specific arrangement of dislocations in form of pile-ups at grain boundaries generate additional driving force and additional nucleation sites for precipitation. Along with heterogeneous precipitation, there is a homogeneous precipitation in areas between bands of coarse slip which also deform but at much smaller rate. This form of decomposition is responsible for a specially high hardening rate during high temperature straining and for thermally stable product of the decomposition of alloy.

The Effect of Radar Data Assimilation in Numerical Models on Precipitation Forecasting (수치모델에서 레이더 자료동화가 강수 예측에 미치는 영향)

  • Ji-Won Lee;Ki-Hong Min
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.457-475
    • /
    • 2023
  • Accurately predicting localized heavy rainfall is challenging without high-resolution mesoscale cloud information in the numerical model's initial field, as precipitation intensity and amount vary significantly across regions. In the Korean Peninsula, the radar observation network covers the entire country, providing high-resolution data on hydrometeors which is suitable for data assimilation (DA). During the pre-processing stage, radar reflectivity is classified into hydrometeors (e.g., rain, snow, graupel) using the background temperature field. The mixing ratio of each hydrometeor is converted and inputted into a numerical model. Moreover, assimilating saturated water vapor mixing ratio and decomposing radar radial velocity into a three-dimensional wind vector improves the atmospheric dynamic field. This study presents radar DA experiments using a numerical prediction model to enhance the wind, water vapor, and hydrometeor mixing ratio information. The impact of radar DA on precipitation prediction is analyzed separately for each radar component. Assimilating radial velocity improves the dynamic field, while assimilating hydrometeor mixing ratio reduces the spin-up period in cloud microphysical processes, simulating initial precipitation growth. Assimilating water vapor mixing ratio further captures a moist atmospheric environment, maintaining continuous growth of hydrometeors, resulting in concentrated heavy rainfall. Overall, the radar DA experiment showed a 32.78% improvement in precipitation forecast accuracy compared to experiments without DA across four cases. Further research in related fields is necessary to improve predictions of mesoscale heavy rainfall in South Korea, mitigating its impact on human life and property.

An Investigation of Large-Scale Climate Indices with the influence on Temperature and Precipitation Variation in Korea (한반도 기온 및 강수량 변동에 영향을 미치는 광역규모 기후지수들에 대한 고찰)

  • Kim, Yeon-Hee;Kim, Maeng-Ki;Lee, Woo-Seop
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.83-95
    • /
    • 2008
  • In this study we have investigated the preceding eighteen large-scale climate indices with a lead time from zero to twelve months that have an influence on the variability of temperature and precipitation in Korea in order to understand which climate indices are overall available as predictors for long-range forecasting. We also have studied the dynamic link between preceding large-scale climate indices and regional climate using singular value decomposition analysis (SVDA) and correlation analysis (CA). Based on the coupled mode between large-scale circulation and regional climate, and correlation pattern between the preceding large-scale climate indices and large-scale circulation, the level of significance on climate indices as a predictor for monthly mean temperature and precipitation was evaluated for 5 and 1% level.

The Analysis of Changma Structure Using Radiosonde Observational Data from KEOP-2007: Part II. The Dynamic and Thermodynamic Characteristics of Changma in 2007 (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석 : Part Ⅱ. 2007년 장마의 역학적 및 열역학적 특성에 관한 사례연구)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • The synoptic structures and the dynamic and thermodynamic characteristics of Changma in 2007 are investigated using the ECMWF analysis data and the radiosonde data from KEOP-2007 IOP. The enhancement of the North-Pacific High into the Korean peninsula and the retreat of the Okhotsk High are shown during the onset of Changma and the change of wind component from southwesterly to northwesterly is appeared during the end of Changma. The baroclinic atmosphere is dominant during Changma at most regions over the Korean peninsula except at Gosan and Sokcho. The quasi-barotropic atmosphere is induced at Gosan by warm air mass and Sokcho by cold air mass. Precipitation in the Korean peninsula occurs when dynamic instability is strengthened as the baroclinic and qusi-barotropic structure is weakened. An empirical orthogonal function (EOF) analysis is performed to find the dominant modes of variability in Changma. The first EOF explains the onset of Changma. The second EOF is related to the discrimination for existence and nonexistence of precipitation during Changma period according to the alternation of equivalent potential temperature between middle and lower atmosphere.

Nonlinear Multivariable Analysis of SOI, Precipitation, and Temperature in Fukuoka, Japan

  • Jin, Young-Hoon;Akira, Kawamura;Kenji, Jinno;Ronny, Berndtsson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.124-133
    • /
    • 2004
  • Global climate variations are expected to affect local hydro-meteorological variables like precipitation and temperature. The Southern Oscillation (SO) is one of the major driving forces that give impact on regional and local climatic variation. The relationships between SO and local climate variation are, however, characterized by strong nonlinear variation patterns. In this paper, the nonlinear dynamic relationship between the Southern Oscillation Index (SOI), precipitation, and temperature in Fukuoka, Japan, is investigated using by a nonlinear multivariable approach. This approach is based on the joint variation of these variables in the phase space. The joint phase-space variation of SOI, precipitation, and temperature is studied with the primary objective to obtain a better understanding of the dynamical evolution of local hydro-meteorological variables affected by global atmospheric-oceanic phenomena.

  • PDF

A Case Study on Heavy Rainfall Using a Wind Profiler and the Stability Index

  • Hong, Jongsu;Jeon, Junhang;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, the vertical characteristics of wind were analyzed using the horizontal wind, vertical wind, and vertical wind shear, which are generated from a wind profiler during concentrated heavy rain, and the quantitative characteristics of concentrated heavy rain were analyzed using CAPE, SWEAT, and SRH, among the stability indexes. The analysis of the horizontal wind showed that 9 cases out of 10 had a low level jet of 25 kts at altitudes lower than 1.5 km, and that the precipitation varied according to the altitude and distribution of the low-level jet. The analysis of the vertical wind showed that it ascended up to about 3 km before precipitation. The analysis of the vertical wind shear showed that it increased up to a 1 km altitude before precipitation and had a strong value near 3 km during heavy rains. In the stability index analysis, CAPE, which represents thermal buoyancy, and SRH, which represents dynamic vorticity, were used for the interpretation of the period of heavy rain. As SWEAT contains dynamic upper level wind and thermal energy, it had a high correlation coefficient with concentrated-heavy-rain analysis. Through the case studies conducted on August 12-13, 2012, it was confirmed that the interpretation of the prediction of the period of heavy rain was possible when using the intensive observation data from a wind profiler and the stability index.

Large enhancement in mechanical properties of the 5052 Al alloys by cryogenic and warm rolling (극저온 압연 및 온간 압연 기술을 이용한 5052 알루미늄 합금의 기계적 성질의 향상)

  • Gang, E.G.;Lee, S.H.;Lee, J.C.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.81-83
    • /
    • 2007
  • Cryogenic rolling combined with warm rolling has been found to be more effective than only cryogenic rolling procedure in improving the strength of a 5052 Al alloy. In this study, cryo-rolled 5052 Al alloys were aged at $175^{\circ}C$. Warm rolling was conducted after dipping plates into silicon oil bath. A notable increase of tensile strength is achieved by the precipitation during warm rolling. The mechanical behavior of this alloy was investigated by hardness and tensile tests. The microstructure was investigated by transmission electron microscopy. It was found that the cryogenic rolling combined with warm rolling was very effective in improving tensile strength.

  • PDF