• Title/Summary/Keyword: Dynamic Neural Network

Search Result 791, Processing Time 0.027 seconds

A Learning Algorithm for a Recurrent Neural Network Base on Dual Extended Kalman Filter (두개의 Extended Kalman Filter를 이용한 Recurrent Neural Network 학습 알고리듬)

  • Song, Myung-Geun;Kim, Sang-Hee;Park, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.349-351
    • /
    • 2004
  • The classical dynamic backpropagation learning algorithm has the problems of learning speed and the determine of learning parameter. The Extend Kalman Filter(EKF) is used effectively for a state estimation method for a non linear dynamic system. This paper presents a learning algorithm using Dual Extended Kalman Filter(DEKF) for Fully Recurrent Neural Network(FRNN). This DEKF learning algorithm gives the minimum variance estimate of the weights and the hidden outputs. The proposed DEKF learning algorithm is applied to the system identification of a nonlinear SISO system and compared with dynamic backpropagation learning algorithm.

  • PDF

Inverse Kinematic Learning of Robot Coordinate Transformations Using Dynamic Neural Network (동적 신경망에 의한 로봇 좌표 변환의 역기구학적 학습)

  • Cho, Hyeon-Seob;Ryu, In-Ho;Jeon, Jeong-Chay;Kim, Hee-Sook;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2363-2366
    • /
    • 1998
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

Implementation of a real-time neural controller for robotic manipulator using TMS 320C3x chip (TMS320C3x 칩을 이용한 로보트 매뉴퓰레이터의 실시간 신경 제어기 실현)

  • 김용태;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.65-68
    • /
    • 1996
  • Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. The TMS32OC31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the, network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time, control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

A Prediction of Shear Behavior of the Weathered Mudstone Soil Using Dynamic Neural Network (동적신경망을 이용한 이암풍화토의 전단거동예측)

  • 김영수;정성관;김기영;김병탁;이상웅;정대웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.123-132
    • /
    • 2002
  • The purpose of this study is to predict the shear behavior of the weathered mudstone soil using dynamic neural network which mimics the biological system of human brain. SNN and RNN, which are kinds of the dynamic neural network realizing continuously a pattern recognition as time goes by, are used to predict a nonlinear behavior of soil. After analysis, parameters which have an effect on learning and predicting of neural network, the teaming rate, momentum constant and the optimum neural network model are decided to be 0.5, 0.7, 8$\times$18$\times$2 in SU model and 0.3, 0.9, 8$\times$24$\times$2 in R model. The results of appling both networks showed that both networks predicted the shear behavior of soil in normally consolidated state well, but RNN model which is effective fir input data of irregular patterns predicted more efficiently than SNN model in case of the prediction in overconsolidated state.

Design of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator (퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계)

  • 이상윤;한성현;신위재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.463-468
    • /
    • 2002
  • In this paper, we proposed a recurrent time delayed neural network controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network controller.

  • PDF

An Immune-Fuzzy Neural Network For Dynamic System

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.303-308
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

Dynamic analysis of short circulation with OPR prediction used neural network (Neural network을 이용한 OPR예측과 short circulation 동특성 분석)

  • Jeon, Jun-Seok;Yeo, Yeong-Gu;Park, Si-Han;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.86-96
    • /
    • 2004
  • Identification of dynamics of short circulation during grade change operations in paper mills is very important for the effective plant operation. In the present study a prediction method of One Pass Retention(OPR) is proposed based on the neural network. The present method is used to analyze the dynamics of short circulation during grade change. Properties of the product paper largely depend upon the change in the OPR. In the present study the OPR is predicted from the training of the network by using grade change operation data. The results of the prediction are applied to the modeling equation to give flow rates and consistencies of short circulation.

  • PDF

Position control of single-link manipulator using neural network (신경 회로망을 이용한 단일 링크의 유연한 매니퓰레이터의 위치제어)

  • 이효종;최영길;전홍태;장태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.18-23
    • /
    • 1990
  • In this paper, the dynamic modeling and a tip-position controller of a single-link flexible manipulator are developed. To design the controller of a flexible manipulator, at first, it is required to obtain the accurate dynamic model of manipulator describing both rigid motion and flexible vibration. For this purpose, FEM(Finite Element Method) and Lagrange approach are utilized to obtain the dynamic model. After obtaining the dynamic model of a single-link manipulator, a controller which computes the input torque to perform the desired trajectory is developed using neural network.

  • PDF

Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors (디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계)

  • 김용태;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Estimating Strain Rate Dependent Parameters of Cowper-Symonds Model Using Electrohydraulic Forming and Artificial Neural Network (액중 방전 성형과 인공신경망 기법을 활용한 Cowper-Symonds 구성 방정식의 변형률 속도 파라메터 역추정)

  • Byun, H.B.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2022
  • Numerical analysis and dynamic material properties are required to analyze the behavior of workpiece during an electrohydraulic forming (EHF) process. In this study, EHF experiments were conducted under three conditions (6, 7, 8 kV). Dynamic material properties of Al 5052-H34 were inversely estimated through an ANN (Artificial Neural Network) model constructed based on LS-Dyna analysis results. Parameters of Cowper-Symonds constitutive equation, C and p, were used to implement dynamic material properties. By comparing experimental results of three conditions with ANN model results, optimized parameters were obtained. To determine the reliability of the derived parameters, experimental results, LS-Dyna analysis results, and ANN results of three conditions were compared using MSE and SMAPE. Valid parameters were obtained because values of indicators were within confidence intervals.