• 제목/요약/키워드: Dynamic Neural Network

검색결과 791건 처리시간 0.027초

Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측 (Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model)

  • 김유일
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

분산 시간지연 회귀신경망을 이용한 피치 악센트 자동 인식 (Automatic Recognition of Pitch Accent Using Distributed Time-Delay Recursive Neural Network)

  • 김성석
    • 한국음향학회지
    • /
    • 제25권6호
    • /
    • pp.277-281
    • /
    • 2006
  • 본 논문에서는 시간지연 회귀신경회로망을 이용한 음절 레벨에서의 피치 악센트 자동 인식 방법을 제안한다. 시간지연 회귀 신경회로망은 두 종류의 동적 문맥정보를 표현한다. 시간지연 회귀신경회로망의 시간지연 입력 노드는 시간 축 상의 피치 및 에너지 궤도를 표현하고, 회귀 노드는 피치 악센트의 특성을 반영하는 문맥 정보를 표현한다. 본 논문에서는 이러한 시간지연 회귀신경회로망을 두 가지 형태로 구성하여 피치 악센트 자동 인식에 적용한다. 하나의 형태는 단일 시간지연 회귀 신경회로망에서 복수 개의 운율 특정파라미터 (피치, 에너지, 지속시간)를 입력 노드에 함께 공급하여 피치 악센트 인식을 수행하고, 다른 하나는 분산 시간지연 회귀 신경회로망을 이용하여 피치 악센트 인식을 수행한다. 분산 시간지연 회귀 신경회로망은 여러 개의 시간지연 회귀 신경회로망으로 구성되고, 각 시간지연 회귀 신경회로망은 단일 운율 특징 파라미터만으로 학습된다. 분산 시간지연 회귀 신경회로망의 인식결과는 개별 시간지연 회귀 신경회로망의 출력 값의 가중치 합으로 결정된다. 화자 독립 피치 악센트 인식 실험을 위해 보스톤 라디오 뉴스 코퍼스 (BRNC)를 사용하였다. 실험결과, 분산 시간지연 회귀 신경회로망은 83.64%의 피치 악센트 인식률을 보였다.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

Application of an Adaptive Autopilot Design and Stability Analysis to an Anti-Ship Missile

  • Han, Kwang-Ho;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.78-83
    • /
    • 2011
  • Traditional autopilot design requires an accurate aerodynamic model and relies on a gain schedule to account for system nonlinearities. This paper presents the control architecture applied to a dynamic model inversion at a single flight condition with an on-line neural network (NN) in order to regulate errors caused by approximate inversion. This eliminates the need for an extensive design process and accurate aerodynamic data. The simulation results using a developed full nonlinear 6 degree of freedom model are presented. This paper also presents the stability evaluation for control systems to which NNs were applied. Although feedback can accommodate uncertainty to meet system performance specifications, uncertainty can also affect the stability of the control system. The importance of robustness has long been recognized and stability margins were developed to quantify it. However, the traditional stability margin techniques based on linear control theory can not be applied to control systems upon which a representative non-linear control method, such as NNs, has been applied. This paper presents an alternative stability margin technique for NNs applied to control systems based on the system responses to an inserted gain multiplier or time delay element.

강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어 (Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator)

  • 한성익
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계 (Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture)

  • 박호성;박건준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

손 제스터 인식을 이용한 실시간 아바타 자세 제어 (On-line Motion Control of Avatar Using Hand Gesture Recognition)

  • 김종성;김정배;송경준;민병의;변증남
    • 전자공학회논문지C
    • /
    • 제36C권6호
    • /
    • pp.52-62
    • /
    • 1999
  • 본 논문에서는 가상 환경에서 움직이는 인체 Avatar의 움직임을 인간의 가장 자연스러운 동작의 하나인 손 제스처를 이용하여 실시간으로 제어하는 인식 시스템의 구현에 관하여 상술한다. 동적 손 제스처는 컴퓨터와 제스처를 사용하는 사람과의 상호 연결 수단이다.가상공간 상에서의 자연스러운 움직임을 표현하기 위해 32개의 자유도(DOF)를 가진 인체 아바타를 구성하였으며, 정지, 전후좌우로 한 걸음 이동, 걷기, 달리기, 좌우로 회전, 뒤로 돌기, 물건 잡기의 동작 모드를 정의하여 가상공간 상의 인체 아바타는 미리 설정된 손 제스처에 따라 실시간에 따라 실시간으로 3차원공간상에서 움직일 수 있다. 실시간의 인체 아바타 이동에는 역 기구학과 기구학을 혼용하여 적용하였으며, 사이버 터치를 착용한 사용자의 손 제스처 인식에는 인공 신경망 이론과 퍼지 이론을 도입하여 실시간 인식이 가능하였다.

  • PDF

구조물의 손상평가용 신경망의 특성평가에 관한 실험적 연구 (Experimental Study for Characteristics of Assessment of Neural Networks for Structural Damage Detection)

  • 오주원;허광희;정의태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권5호
    • /
    • pp.179-186
    • /
    • 2010
  • 한 구조물이 손상을 입으면 그 구조물의 동적응답(고유진동수, 가속도, 변형률)이 변하게 된다. 이와 같이 변하는 동적응답을 응답신호로 계측하고 이들 데이터를 신경망에 적용하여 구조물의 손상을 평가하는 방법이 신경망손상평가법이다. 현재까지 정형화된 특정한 경우의 연구가 주로 이루어져 있지만 일반적인 신경망손상평가법의 특성에 관한 연구나 실용 가능성과 장단점에 관한 충분한 연구가 부족하다. 따라서 본 연구는 신경망에 다양한 동적응답을 적용하는데 있어 신경망손상평가법의 일반적인 특성과 적용의 문제점을 연구하였다. 신경망손상평가법은 일정한 가진력을 손상이 있는 구조물에 가하고 그로부터 얻은 응답신호를 이용하여 신경망을 학습을 시킨 후, 임의의 손상이 있는 구조물에 동일한 가진력을 가하여 얻은 응답신호를 이용하여 손상의 위치와 정도를 찾는 것이 현재까지의 연구였다. 그러나 일반적으로 구조물에 작용하는 가진력은 일정하지 않다. 따라서 동일한 가진력에 의해 학습된 신경망에 가진력의 변화가 있는 경우에도 손상을 파악하는지 평가하였다. 모든 응답신호는 모형실험을 통하여 획득하였다.

신경회로망을 이용한 SVC 계통의 안정화에 관한 연구 (A Study on the SVC System Stabilization Using a Neural Network)

  • 정형환;허동렬;김상효
    • 조명전기설비학회논문지
    • /
    • 제14권3호
    • /
    • pp.49-58
    • /
    • 2000
  • 본 논문에서는 FACTS(Flexible AC Transnission System)로 분류되는 여라 기기중 기존의 전압제어 및 무효 전력보상기들이 가지고 있는 바속응성과 불연속성 문제를 해결해줄 수 있는 정지형 무효전력 보상가(Static Var Compensator : SVC)를 포함한 전력계통에 신경회로망 제어기를 적용하여 안정화에 관하여 연구하였다. 제안된 신경회로망 제어기는 오차와 오차변화량을 입력하는 오차역전과 학습 알고리즘을 사용하고, 학습시간올 단축하기 위해 모멘텀 방법을 사용하였다. 제안된 방법의 강인섬을 입증하기 위해 중부하시 및 정상부하시에 초기 전력을 변동시킨 경우와 초기에 회천자각을 변동시킨 경우에 대하여 시스렘의 회전자각, 각속도 편차 특성 및 단 자전압의 동특성을 고찰하여 다른 시스템보다 응답특성이 우수합을 보였다.

  • PDF