• 제목/요약/키워드: Dynamic Mesh Technique

검색결과 65건 처리시간 0.036초

영구자석형 선형 동기전동기의 직접 추력 제어 (Direct Thrust Control of Permanent Magnet Linear Synchronous Motor)

  • 우경일;권병일;류세현;박승찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.316-318
    • /
    • 1998
  • This paper describes the direct thrust control of permanent magnet linear synchronous motor (PMLSM) with the secondary aluminium sheet. The time stepped finite element method and moving mesh technique are used for simulating dynamic characteristics of the PMLSM. The secondary back-iron conductivity as well as the initial flux linkage due to permanent magnet are considered in the simulation.

  • PDF

유한요소법과 프라이자흐 모델을 이용한 동기형 릴럭턴스 전동기( Synchronous Reluctance Motor : SynRM)의 On-line 판정시스템 특성 해석 (The On-line Identification System Characteristics Analysis of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model)

  • 김홍석;이명기;이민명;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1001-1002
    • /
    • 2007
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the efficiency of on-line parameter identification system for position sensorless control of a SynRM under saturation and iron loss. Comparisons are given with angle of the observer and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively. The position sensorless control using identified motor parameters is realized, and the effective of the on-line parameter identification system is verified by experimental results.

  • PDF

다양한 형태의 개구부를 가진 전단벽식 구조물의 효율적 인 동적 해석 (Efficient dynamic analysis of shear wall building structures with various types of openings)

  • 김현수;이승재;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.329-336
    • /
    • 2003
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were peformed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합 (Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES)

  • 이경준;양경수
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

유연매체의 거동해석: II. 공기의 영향을 고려한 해석 (Analysis of Flexible Media: II. Including Aerodynamic Effect)

  • 지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1335-1340
    • /
    • 2007
  • The media transport systems, such as printers, copy machines, facsimiles, ATMs, cameras, etc. have been widely used and being developed rapidly. In the development of those sheet-handling machineries, it is important to predict the static and dynamic behavior of the sheet with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media are very thin, light and flexible, so they behave in geometric nonlinearity with large displacement and large rotation but small strain. In the flexible media analysis, aerodynamic effect from the surrounding air must be included because any small force can make large deformation. In this paper, surrounding air was modeled by incompressible Navier-Stokes flow and an arbitrary Lagranigan-Eulerian(ALE) finite element method with automatic mesh-updating technique was formulated for large domain changes. In the numerical simulations, the results with consideration of the air fast decayed and converged into static results while the results without considering air oscillated continuously.

  • PDF

강성저감을 고려한 플랫슬래브 구조물의 지진해석 (Seismic Analysis of Flat Slab Structures considering Stiffness Degradation)

  • 김현수;이승재;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF

Field measurement and numerical simulation of snow deposition on an embankment in snowdrift

  • Ma, Wenyong;Li, Feiqiang;Sun, Yuanchun;Li, Jianglong;Zhou, Xuanyi
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.453-469
    • /
    • 2021
  • Snow accumulation on the road frequently induces a big traffic problem in the cold snowy region. Accurate prediction on snow distribution is fundamental for solving drifting snow disasters on roads. The present study adopts the transient method to simulate the wind-induced snow distribution on embankment based on the mixture multiphase model and dynamic mesh technique. The simulation and field measurement are compared to confirm the applicability of the simulation. Furthermore, the process of snow accumulation is revealed. The effects of friction velocity and snow concentration on snow accumulation are analyzed to clarify its mechanism. The results show that the simulation agrees well with the field measurement in trends. Moreover, the snow accumulation on the embankment can be approximately divided into three stages with time, the snow firstly deposited on the windward side, then, accumulation occurs on the leeward side which induced by the wake vortex, finally, the snow distribution reaches an equilibrium state with the slope of approximately 7°. The friction velocity and duration have a significant influence on the snow accumulation, and the vortex scale directly affected the snow deposition range on the embankment leeward side.

Study of Stay Vanes Vortex-Induced Vibrations with different Trailing-Edge Profiles Using CFD

  • Neto, Alexandre D'Agostini;Saltara, Fabio
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.363-374
    • /
    • 2009
  • The 2D flow around 13 similar stay-vane profiles with different trailing edge geometries is investigated to determinate the main characteristics of the excitation forces for each one of them and their respective dynamic behaviors when modeled as a free-oscillating system. The main goal is avoid problems with cracks of hydraulic turbines components. A stay vane profile with a history of cracks was selected as the basis for this work. The commercial finite-volume code $FLUENT^{(R)}$ was employed in the simulations of the stationary profiles and, then, modified to take into account the transversal motion of elastically mounted profiles with equivalent structural stiffness and damping. The k-$\omega$ SST turbulence model is employed in all simulations and a deforming mesh technique used for models with profile motion. The static-model simulations were carried out for each one of the 13 geometries using a constant far field flow velocity value in order to determine the lift force oscillating frequency and amplitude as a function of the geometry. The free-oscillating stay-vane simulations were run with a low mass-damping parameter ($m^*{\xi}=0.0072$) and a single mean flow velocity value (5m/s). The structural bending stiffness of the stay-vane is defined by the Reduced Velocity parameter (Vr). The dynamic analyses were divided into two sets. The first set of simulations was carried out only for one profile with $2{\leq}Vr{\leq}12$. The second set of simulations focused on determining the behavior of each one of the 13 profiles in resonance.