• Title/Summary/Keyword: Dynamic Measuring

Search Result 776, Processing Time 0.029 seconds

Structural Health Monitoring Based on Wave Propagation Characteristics (파동전파특성에 기초한 구조 건전도 모니터링)

  • Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.311-314
    • /
    • 2007
  • The experimental method of measuring dynamic properties of structures was presented. The method is based on the flexural wave propagation characteristics. Using the method, change in structural dynamic properties due to damage is measured. The crack has much more significant impact on the strain energy than the inertial effects. From this, the sensitivity of the dynamic stiffness on the crack location is estimated by calculating the strain energy. When the wave propagates, the strain and kinetic energies shows cyclic changed over space. The crack that occurred at locations where the wave energy is in the form of the potential energy affected most significantly the wave propagation characteristics. The effects of crack location on the wave propagation were used to determine the crack location.

  • PDF

Process -dynamic Model for Stock-fluid in a Pressurized Paper Machine Headbox (초지기 가압-헤드박스 내 지료유체의 공정-동특성모델)

  • 윤성훈
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.35-46
    • /
    • 1999
  • Mathematical modeling provided a systematic analysis for the dynamic behavior of stock fluid in a paper machine pressurized headbox. Dynamic responses of liquid level, sheet basis weight and hydraulic pressure were predicted from the simulation model which represents the system. A unit step and asinusoidal wave load were considered as the input forcing functions in the headbox. Results are summarized as follows : 1. The dependence of sheet basis weight on liquid level in the pressurized-headbox was non -linear. 2. Liquid level in the head-box showed first-order lag with a unit step forcing to fluid input rate ; 3 . The amplitude of wave response of liquid level was inversely proportional to the time content for the sinusoidal input changes ; 4.Sheet basis weight showed second-order oscillating underamped responses for the step input load of flow rate ; 5. The damping factor in the second-order system was a function of air-pressure in the headbox ; and, 6. Dead-time existed in the measuring process for the headbox slice pressure.

  • PDF

A Study on Identifying Dynamic Characteristic Parameters of Rotor Bearing Systems Using Field Measurement Data of Unbalance Responses (현장 불평형 응답을 이용한 로터-베어링 시스템의 매개변수 규명연구)

  • Lee, Dong-Hwan;Kim, Yeong-Il;Park, No-Gil
    • 연구논문집
    • /
    • s.29
    • /
    • pp.101-109
    • /
    • 1999
  • Presented in this paper is a new method of identifying the critical speed of rotor-bearing systems without actually reaching at the critical speed itself. Using the method, it is not only possible to calculate the critical speed by measuring a series of rotor responses at much lower rotating speeds away from and without reaching at the critical speeds but also the damping ratio and eccentricity of the system can be identified at the same time. Two types of test rotors were tested on the Rotor Dynamics Test Facility at the Rotordyn-amics Lab, KIMM, and the theory has been confirmed experimentally. The method can be adopted to monitor changes of the dynamic characteristics of critical rotating machinery before and after overhauls, repairs, exchanges of various parts, or to detect trends of direction of subtle changes in the dynamic characteristic parameters over a long periods of time.

  • PDF

A Method for Identifying Human-generated Forces during an Extensor Thrust

  • Hong Seong-Wook;Patrangenaru Vlad;Singhose William;Sprigle Stephen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.66-71
    • /
    • 2006
  • Some wheelchair users with neuromuscular disorders experience involuntary extensor thrusts, which may cause injuries via impact with the wheelchair, cause the user to slide out of the wheelchair seat, and damage the wheelchair. Knowledge of the human-generated forces during an extensor thrust is of great importance in devising safer, more comfortable wheelchairs. This paper presents an efficient method for identifying human-generated forces during an extensor thrust. We used an inverse dynamic approach with a three-link human body model and a system for measuring human body motion. We developed an experimental system that determines the angular motion of each human body segment and the force at the footrest, which was used to overcome the mathematical indeterminacy of the problem. The proposed method was validated experimentally, illustrating the force-identification process during an extensor thrust.

A Study of Korean (Industrial) Standards for Pneumatic Servo Valve (공압서보밸브 KS규격 정립에 관한 연구)

  • 김동수;이원희;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1231-1234
    • /
    • 2003
  • Pneumatic servo valve which is widely applied in industrial world is advanced technology compounded with electric, electronic and machine. And It is consist of Linear Force Motor. Spool Commutation Mechanism and Microprocessor. In this study, we accomplished test method of Linear Force motor test, Static characteristic test, Dynamic characteristic test for KS(Koran industrial standard) of Pneumatic servo valve. we accomplished study about the main item of Static characteristic test which is related to unload flow characteristic test. And Dynamic characteristic test was step input test and frequency response test. Specially about frequency response test, There was a difficulty resulting from the time delay problem caused by the basic compressibility of air. In order to solve the problem in this study. we proposed two methods. First, displacement of the servo valve spool was directly measured by using a laser sensor. Second, method of calculating control flow by measuring pressure and temperature of chamber.

  • PDF

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

A Study on the Resistance Spot Welding of Aluminum Alloy (I) (알루미늄 합금의 저항점 용접에 관한 연구 ( I ))

  • 김상필;홍태민;장희석
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.127-140
    • /
    • 1994
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. In the resistance spot welding processes the size of molten nugget is a criterion to assess weld quality. Many research have founded on measuring weld nugget size at the same time monitoring welding process parameters such as dynamic resistance and electrode movement. With increasing demand of energy saving, many efforts were made to employ aluminum alloys that are lighter than steel and have relatively equivalent strength to steel in the automobile industry. In this paper, spot weldability of aluminum alloys for various welding conditions were examined by series of experiments. One of the 6000 series (Mg-Si) aluminum alloy, 6383-T4 was chosen, which is currently considered as a substitute for the galvanized steel. Dynamic resistance, electrode movement and corresponding nugget size were observed and compared to the case of steel. Finally, resistance spot welding of dissimilar material (galvanized steel-aluminum alloy) was attempted.

  • PDF

A Study on the Fabrication of a Thremopneumatic micropump (열공압형 마이크로 펌프의 제작에 관한 연구)

  • Kim, Y.S.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1960-1962
    • /
    • 1996
  • A thermopneumatic micropump with two micronozzles has been fabricated and tested. The actuator consists of a p+ diaphragm and a pyrex glass on which a microheater is deposited. Two micronozzles are fabricated on either side of a single silicon wafer and behave as a dynamic passive valves. The actuator and the micronozzle are assembled to make a micropump. The center deflection of the actuator diaphragm to step voltage input has been measured. The dynamic test hag been performed by measuring the center deflection of the diaphragm under various input voltages and duty ratios. Also dynamic pumping test is performed. The measured built-up pressure between inlet and outlet of the micropump is 80 Pa for the actuation at 20V, 10 Hz.

  • PDF

An experimental study on the dynamic characteristics of a residential air-conditioner with a R22 alternative refrigerant (R22 대체냉매 에어컨의 동적 특성에 대한 실험적 연구)

  • Kim, Man-Hoe
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.408-415
    • /
    • 1998
  • This study presents experimental results on the shut-down and start-up characteristics of a residential split-system air-conditioner with capillary tube, using R410A as a R22 alternative refrigerant. During shut-down, the transient characteristics are evaluated by measuring the high side and low side pressures and temperatures of the system. The dynamic behavior of the system after start-up is also investigated at the high temperature cooling test condition. All experiments are performed in psychrometric calorimeter. The cooling capacity, power consumption, dehumidification capacity and cycle characteristics after start-up are analyzed.

Risk Evaluation of Biodiesel (바이오디젤연료 위험성평가)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.79-82
    • /
    • 2008
  • Biodiesel is manufactured from vegetable oils, etc. in reaction with methanol so that the product of biodiesel may be dangerous due to the methanol remained of it. The risks of methanol remained in biodiesel were studied by measuring flash points and dynamic viscosity to some samples of biodiesel by adding methanol to a certain percentage of. The results of flash points of biodiesel are decreased in accordance with increasing of methanol in biodiesel and also decreasing the dynamic viscosity. It was shown that the risks of explosion of biodiesel are significantly high due to lower flash points resulted from methanol remained in biodiesel fuel as a reactant or adding to biodiesel for reduction of viscosity.