• 제목/요약/키워드: Dynamic Material Properties

Search Result 833, Processing Time 0.035 seconds

Dynamic Compressive Deformation Characteristics of Free-Cutting Brass And Yellow Brass at High Strain Rates (고변형률 압축 하중에서 쾌삭 황동과 황동의 동적 변형 거동 특성)

  • Lee, Ouk-Sub;Kim, Kyoung-Joon;Lee, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.107-112
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically loaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.

  • PDF

Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube

  • Moradi-Dastjerdi, Rasool
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.441-456
    • /
    • 2016
  • This work reports wave propagation in the nanocomposite cylinders that reinforced by straight single-walled carbon nanotubes based on a mesh-free method. Moving least square shape functions have been used for approximation of displacement field in weak form of motion equation. The straight carbon nanotubes (CNTs) are assumed to be oriented in specific or random directions or locally aggregated into some clusters. In this simulation, an axisymmetric model is used and also the volume fractions of the CNTs and clusters are assumed to be functionally graded along the thickness. So, material properties of the carbon nanotube reinforced composite cylinders are variable and estimated based on the Eshelby-Mori-Tanaka approach. The effects of orientation, aggregation and volume fractions of the functionally graded clusters and CNTs on dynamic behavior of nanocomposite cylinders are studied. This study results show that orientation and aggregation of CNTs have significant effects on the effective stiffness and dynamic behaviors.

A Development of the Dynamic Absorber and Damper for Vibration and Noise Reduction of the Personal Computer (PC의 진동/소음 저감을 위한 쿨링홴의 동흡진장치 및 절연장치의 개발)

  • Jung, Won-Young;Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2011
  • The purpose of this study is reduction the vibration of the personal computer by developing the vibration absorber and damper. The eccentricity of the cooling fan causes the vibration of the computer. We designed the material properties of the vibration absorber and damper by FEM model within operation frequencies of the cooling fan. We experiment the overall analysis and system analysis by using a laser vibrometer. The result shows that the proposed dynamic absorber and damper reduce the vibration of the personal computer.

Tension Force Identification of Cable Structures using Various Analytical Methods (다양한 해석적 방법에 의한 케이블 구조의 장력 추정)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.38-46
    • /
    • 2012
  • The method based on various mathematical characteristic equations for identifying tensile forces in the cable structure system are used as response data to reflect the properties of the dynamic sensitivity. The vibration tests have been conducted with respect to levels of applied weight for the sagged cable. In this study, a set of natural frequencies are extracted from the measured dynamic data. Next, existing characteristic equation methods based these extracted natural frequencies are applied to identify tensil forces of the sagged cable system. Through several verification procedures, the proposed methods could be applied to a sagged cable system when the initial material data are insufficiency.

Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading (상용 알루미늄 합금의 고속 인장/압축 변형거동 규명)

  • Lee, O.S.;Kim, G.H.;Kim, M.S.;Hwang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.268-273
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, can be used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the aluminum alloys, Al2024-T4, Al6061-T6 and Al7075-T6, under high strain rate compressive and tensile loading are determined using SHPB technique.

  • PDF

Dynamic Compressive Deformation Characteristics of Brass at High Strain Rates (고변형률 압축 하중에서 활동(KS D 5101 C3605BD-F)의 동적 변형 거동 특성)

  • 이억섭;나경찬;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.142-147
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically leaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate ]ending conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.

Cure and Heat Transfer Analysis in LED Silicone Lens using a Dynamic Cure Kinetics Method (승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화 및 열전달해석)

  • Song, M.J.;Kim, K.H.;Hong, S.K.;Park, J.Y.;Lee, J.W.;Yoon, G. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Recently, silicone is being used for LED chip lens due to its good thermal stability and optical transmittance. In order to predict residual stresses, which cause optical birefringence and mechanical warpage of silicone, a finite element analysis was conducted for the curing of silicone during molding. For the analysis of the curing process, a dynamic cure kinetics model was derived based on the results of a differential scanning calorimetry (DSC) testing and applied to the material properties for finite element analysis. Finite element simulation results showed that a step cure cycle reduced abrupt reaction heat and showed a decrease in the residual stresses.

Permeability of Polypropylene Fiber Reinforced Soil Concrete Pavement Material (폴라프로필렌 섬유보강 흙콘크리트 포장재료의 투수 특성)

  • Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.13-19
    • /
    • 2004
  • This study was performed to evaluate permeable properties of eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The fIexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were increased with increasing the content of coarse aggregate, soil compound and polypropylene fiber. The flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were 259 MPa, 3,527 m/s and 275 ${\times}$ 102 MPa at the curing age of 28 days, respectively. The coefficient of permeability was decreased with increasing the content of coarse aggregate and soil compound, but it was increased with increasing the content of polypropylene fiber. Accordingly, this concrete can be used for farm road.

On the Vibration Analysis of AFM Microcantilevers Using Proper Orthogonal Modes (적합직교모드를 이용한 AFM 마이크로캔틸레버의 진동 해석에 대하여)

  • Lee, Soo-Il;Hwang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.756-759
    • /
    • 2005
  • Dynamic force microscopy utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent ideas based on proper orthogonal decomposition (POD) and detailed experiments that yield new perspectives and insight into AFM. A dynamic cantilever model with Lennrad-Jones interaction Potential which includes attractive and repulsive van der Waals demonstrates the resonable tapping mode response in time and frequency.

  • PDF

A numerical and computer simulation for dynamic stability analysis of 3-unknown graded porous nanoplates using a Chebyshev-Ritz-Bolotin method

  • Wei, Dong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.379-386
    • /
    • 2021
  • A numerical and computer simulation for dynamic stability analysis of graded porous nanoplates has been provided using a Chebyshev-Ritz-Bolotin approach. The nanoplate has been formulated according to the nonlocal elasticity and a 3-unkown plate model capturing neutral surface location. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The nano-size plate has also been assumed to be under temperature and moisture variation. It will be shown that stability boundaries of the nanoplate are dependent on static and dynamical load factors, porosity factor, temperature variation and nonlocal parameter.