• Title/Summary/Keyword: Dynamic Guard Channels

Search Result 3, Processing Time 0.019 seconds

Dynamic Channel Allocation Control with thresholds in Wireless Cellular Networks using Simpy

  • Cao, Yang;Ro, Cheul-Woo
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.19-22
    • /
    • 2012
  • New and handoff calls control mechanisms are the key point to wireless cellular networks. In this paper, we present an adaptive algorithm for dynamic channel allocation scheme with guard channels and also with handoff calls waiting queue ensuring that handoff calls take priority over new calls. Our goal is to find better tradeoff between handoffs and new calls blocking probabilities in order to achieve more efficient channel utilization. Simpy is a Python based discrete event simulation system. We use Simpy to build our simulation models to get analytical data.

Void Fraction Measurement by the Improved Multi-Channel Impedance Void Meter (개량된 다채널 임피던스형 측정기에 의한 기포율의 측정)

  • Song, Cheol-Hwa;Jeong, Mun-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.384-398
    • /
    • 1996
  • An improved multi-channel Impedance Void Meter (IVM) is developed to measure an area-averaged void fraction. It consists of a main sensor, a reference sensor and a signal processor. The sensor was designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. Guard electrodes are used to obtain evenly distributed electrical field in a measuring volume. A reference sensor is also installed to eliminate the drift in void signal caused by the changes in electrical properties of working fluid. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. As an example of applications, the mean and fluctuating components of void fraction are measured for bubbly and slug flow regime, and it is shown that IVM has good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel.

Modeling and Performance Analysis of Communication Channels for Multimedia System (멀티미디어 시스템의 통신 채널 모델링 및 성능분석)

  • Bang Suk-Yoon;Ro Cheul-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.147-155
    • /
    • 2005
  • In this paper, communication channels for the transmission of multimedia packets are modeled and evaluated. The multimedia packet traffic characterized by on-off and MMPP process for voice and data, respectively, dynamic channel allocation, queueing of data packets due to unavailability of channels and dropping of queued data packets over timeout, and guard channel for voice packets are modeled. The performance indices adopted in the evaluation of SRN model includes blocking and dropping probabilities. The SRN uses rewards concepts instead of the complicate numerical analysis required for the Markov chain. It is shown that our SRN modeling techniques provide an easier way to carry out performance analysis.

  • PDF