• Title/Summary/Keyword: Dynamic Frequency Hopping

Search Result 7, Processing Time 0.019 seconds

The hybrid method of Listen-Before-Talk and Adaptive Frequency Hopping for coexistence of Bluetooth and WLAN (블루투스 및 무선 LAN 시스템의 동시지원을 위해 Listen-Before-Talk 기법을 결합한 Adaptive Frequency Hopping 방식의 제안)

  • ;Bin Zhen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.706-718
    • /
    • 2002
  • In bluetooth system, there are two kinds of interference. One is the frequency static interference, for example 802.11 direct sequence, the interferer uses fixed frequency band. Another is frequency dynamic interference, for example other piconets or 802.11 frequency hopping, the interferer uses dynamic frequency channel and cant be estimated. In this paper we introduce a novel solution of hybrid method of Listen-Before-Talk (LBT) and Adaptive Frequency Hopping (AFH) to address the coexistence of bluetooth and Direct Sequence of wireless local area network (WLAN). Before any bluetooth packet transmission, in the turn around time of the current slot, both the sender and receiver sense the channel whether there is any transmission going on or not. If the channel is busy, packet transmission is withdrawn until another chance. This is the LBT in Bluetooth. Because of asymmetry sense ability of WLAN and bluetooth, AFH is introduced to combat the left front-edge packet collisions. In monitor period of AFH, LBT is performed to label the channels with static interference. Then, all the labeled noisy channels are not used in the followed bluetooth frequency hopping. In this way, both the frequency dynamic and frequency static interference are effectively mitigated. We evaluate the solution through packet collision analysis and a detail realistic simulation with IP traffic. It turns out that the hybrid method can combat both the frequency dynamic and frequency static interference. The packet collision analysis shows it almost doubles the maximal system aggregate throughput. The realistic simulation shows it has the least packet loss.

Dynamic Spectrum Sensing and Channel Access Mechanism in Frequency Hopping Based Cognitive Radio Ad-hoc Networks (주파수 홉핑 기반 인지무선 애드 혹 네트워크에서 동적 스펙트럼 센싱 및 채널 엑세스 방안)

  • Won, Jong-Min;Yoo, Sang-Jo;Seo, Myunghwan;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2305-2315
    • /
    • 2015
  • Frequency resource value is growing more and more with the development of the wireless communication. With the advent of the current information society comes a serious shortage of frequency resource, as the amount of supply is far from meeting its demands. Thus, cognitive radio (CR) technique is receiving more attention as a way to make use of the temporarily unoccupied frequency resource. In this paper we propose a novel out-of-band spectrum sensing and dynamic channel access scheme for frequency hopping-based cognitive radio ad-hoc networks. At the beginning of each current channel hopping time, member nodes perform spectrum sensing for the next hopping channel. Based on the proposed collision free primary detection notification, member nodes can determine whether they should execute a hopping time extension procedure of the current channel or not. When the primary detected hopping channel is re-idled, the hopping pattern recovery procedure is performed. In this paper we evaluated the performance of the proposed dynamic sensing and hopping channel extension mechanism for the various wireless network conditions. As a result, we show that the proposed method can increase channel utilization and provide reliable channel management operation.

Online Hop Timing Detection and Frequency Estimation of Multiple FH Signals

  • Sha, Zhi-Chao;Liu, Zhang-Meng;Huang, Zhi-Tao;Zhou, Yi-Yu
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.748-756
    • /
    • 2013
  • This paper addresses the problem of online hop timing detection and frequency estimation of multiple frequency-hopping (FH) signals with antenna arrays. The problem is deemed as a dynamic one, as no information about the hop timing, pattern, or rate is known in advance, and the hop rate may change during the observation time. The technique of particle filtering is introduced to solve this dynamic problem, and real-time frequency and direction of arrival estimates of the FH signals can be obtained directly, while the hop timing is detected online according to the temporal autoregressive moving average process. The problem of network sorting is also addressed in this paper. Numerical examples are carried out to show the performance of the proposed method.

Measurement-based Channel Hopping Scheme against Jamming Attacks in IEEE 802.11 Wireless Networks (IEEE 802.11 무선랜 재밍 환경에서의 측정 기반 채널 도약 기법)

  • Jeong, Seung-Myeong;Jeung, Jae-Min;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.205-213
    • /
    • 2012
  • In this paper, we propose a new channel hopping scheme based on IEEE 802.11h as a good countermeasure against jamming attacks in IEEE 802.11 wireless networks. 802.11h Dynamic Frequency Selection (DFS) is a mechanism which enables hopping to a best channel with full channel measurement, not a randomly chosen channel, when the current link quality degradation occurs due to interferers such as military radars. However, under jammer attacks, this needs a time for full channel measurement before a new channel hopping and due to link disconnection during the time network performance degradation is inevitable. In contrast, our proposed schemes make an immediate response right after a jammer detection since every device is aware of next hopping channel in advance. To do this, a next hopping channel is announced by Beacon frames and the channel is selected by full channel measurement within Beacon intervals. Simulation results show that proposed scheme minimizes throughput degradation and keeps the advantages of DFS.

Designing Optimal Pulse-Shapers for Ultra-Wideband Radios

  • Luo, Xiliang;Yang , Liuqing;Giannakis, Georgios-B.
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.344-353
    • /
    • 2003
  • Ultra-wideband (UWB) technology is gaining increasing interest for its potential application to short-range indoor wireless communications. Utilizing ultra-short pulses, UWB baseband transmissions enable rich multipath diversity, and can be demodulated with low complexity receivers. Compliance with the FCC spectral mask, and interference avoidance to, and from, co-existing narrow-band services, calls for judicious design of UWB pulse shapers. This paper introduces pulse shaper designs for UWB radios, which optimally utilize the bandwidth and power allowed by the FCC spectral mask. The resulting baseband UWB systems can be either single-band, or, multi-band. More important, the novel pulse shapers can support dynamic avoidance of narrow-band interference, as well as efficient implementation of fast frequency hopping, without invoking analog carriers.

A Proactive Dynamic Spectrum Access Method against both Erroneous Spectrum Sensing and Asynchronous Inter-Channel Spectrum Sensing

  • Gu, Junrong;Jang, Sung-Jeen;Kim, Jae-Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.361-378
    • /
    • 2012
  • Most of the current frequency hopping (FH) based dynamic spectrum access (DSA) methods concern a reactive channel access scheme with synchronous inter-channel spectrum sensing, i.e., FH is reactively triggered by the primary user (PU)'s return reported by spectrum sensing, and the PU channel to be switched to is assumed precisely just sensed or ready to be sensed, as if the inter-channel spectrum sensing moments are synchronous. However, the inter-channel spectrum sensing moments are more likely to be asynchronous, which risks PU suffering more interference. Moreover, the spectrum sensing is usually erroneous, which renders the problem more complex. To address this problem, we propose a proactive FH based DSA method against both erroneous spectrum sensing and asynchronous inter-channel spectrum sensing (moments). We term it as proactive DSA. The optimal FH sequence is obtained by dynamic programming. The complexity is also analyzed. Finally, the simulation results confirm the effectiveness of the proposed method.

Performance Analysis of Efficient Subchannelization Algorithm against Partial Band Jamming (부채널화를 통한 효율적인 부분대역 재밍 회피 알고리즘과 성능분석)

  • Song, Yu Chan;Hwang, Yu Min;Park, Ji Ho;Kim, Jin Young;Shin, Yoan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.14-18
    • /
    • 2015
  • Electronic warfare recently has became the core of modern warfare and the importance of communication survivability is being considerable day by day. In this paper, we propose an effective jamming avoidance algorithm aginst widely used jamming environment such as GPS jamming. In order to simulate to show our system performance, we consider IEEE 802.16 WiMAX protocol and partial band jamming envoriment. Proposed algorithm can improve channel capacity through subchannelization and we show channel capacity corresponding to subchannel parameter.