• Title/Summary/Keyword: Dynamic Feedback

Search Result 982, Processing Time 0.034 seconds

On The Dynamics And The Demagnetization Effect Of The Amplidyne Generator With Auxiliary Feedback Compensating Winding (상태변수에 의한 회전형전자증폭기의 동특성 해석 및 감자작용효과에 관한 연구)

  • Se Hoon Chang
    • 전기의세계
    • /
    • v.21 no.6
    • /
    • pp.9-16
    • /
    • 1972
  • This work intends to study the machine dynamics in the state-space approah and to formulate the operating characteristics of a namplidyne generator, with balanced control field winding and an auxiliary feedback winding for compensating purpose. In the derivation of the dynamic equation, investigations on the demagnetization effects are accentuated, based on the magnetic interlinks between windings of the machine. From the machine dynamic relation obtained, a state-variable representation of the machine dynamics is approached in the first part of this work.

  • PDF

Passification of Nonlinear Systems via Dynamic Output Feelback$^1)$

  • Son, Young-Ik;Shim, Hyung-Bo;Seo, Jin-Heon
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2000
  • The relative degree one and weakly minimum-phase conditions have been major obstacles for passification of the given system. In this paper, a dynamic output feedback passifier which can remove the obstacles is presented. The proposed method does not require any modification of the given output except just adding a new term. Therefore, the scheme is more suitable for output feedback passification.

  • PDF

Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness (동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험)

  • Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.217-225
    • /
    • 2007
  • This paper proposes the real-time hybrid shaking table testing methods to simulate the dynamic behavior of a soil-structure interaction system with dynamic soil stiffness by using only a structure model as the physical specimen and verifies their effectiveness for experimental implementation. Experimental methodologies proposed in this paper adopt such a way that absolute accelerations measured from the superstructure and shaking table are feedback to the shaking table controller, and then the shaking table is driven by the calculated motion of the absolute acceleration (acceleration feedback method) or the absolute velocity (velocity feedback method) of foundation that is required to simulate the dynamic behavior of a whole soil-structure interaction system. The shaking table test is implemented by reflecting the dynamic soil stiffness, which are differently approximated from the theoretical one depending on the feedback methods, on the shaking table controller to calculate soil part. The effectiveness of the proposed experimental methods is verified by comparing the response measured from the test on a foundation-fixed structural model and that obtained from the experiment of a soil-interaction system under the consideration in this paper and by matching the dynamic soil stiffness reflected on the shaking table controller with that identified using the experimentally measured data.

Design, Implementation, and Flight Tests of a Feedback Linearization Controller for Multirotor UAVs

  • Lee, Dasol;Lee, Hanseob;Lee, Jaehyun;Shim, David Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.740-756
    • /
    • 2017
  • This paper proposes a feedback-linearization-based control algorithm for multirotor unmanned aerial vehicles (UAVs). The feedback linearization scheme is highly efficient for considering nonlinearity between the rotational and translational motion of multirotor UAVs. We also propose a dynamic equation that reflects the aerodynamic effects of the vehicles; the equation's parameters can be determined through curve fitting using actual flight data. We derive the feedback linearization controller from the proposed dynamic equation, and propose a Luenberger observer to attenuate measurement noises. The proposed algorithm is implemented using our in-house flight control computer, and we describe its implementation in detail. To investigate the performance of the proposed algorithm, we carry out two flight scenarios: the first scenario, an autonomous landing on a moving platform, is a test of maneuverability; the second, picking up and replacing an object, test the algorithm's accuracy. In these scenarios, the proposed algorithm precisely controls multirotor UAVs, and we confirm that it can be successfully applied to real flight environments.

Opportunistic Spectrum Access with Discrete Feedback in Unknown and Dynamic Environment:A Multi-agent Learning Approach

  • Gao, Zhan;Chen, Junhong;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3867-3886
    • /
    • 2015
  • This article investigates the problem of opportunistic spectrum access in dynamic environment, in which the signal-to-noise ratio (SNR) is time-varying. Different from existing work on continuous feedback, we consider more practical scenarios in which the transmitter receives an Acknowledgment (ACK) if the received SNR is larger than the required threshold, and otherwise a Non-Acknowledgment (NACK). That is, the feedback is discrete. Several applications with different threshold values are also considered in this work. The channel selection problem is formulated as a non-cooperative game, and subsequently it is proved to be a potential game, which has at least one pure strategy Nash equilibrium. Following this, a multi-agent Q-learning algorithm is proposed to converge to Nash equilibria of the game. Furthermore, opportunistic spectrum access with multiple discrete feedbacks is also investigated. Finally, the simulation results verify that the proposed multi-agent Q-learning algorithm is applicable to both situations with binary feedback and multiple discrete feedbacks.

Flexible Multibody Dynamic Model of a Maglev Vehicle Bogie (자기부상열차 대차 유연 다물체 모델)

  • Kim, Ki-Jung;Han, Hyung-Suk;Lee, Nam-Jin;Kim, Bong-Sub
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1207-1212
    • /
    • 2009
  • The flexible multibody dynamic model of an EMS-type Maglev vehicle is necessary in design stage to predict its behavior, load history and levitation performance. Especially in EMS-type Maglev vehicle, the body flexibility of its bogie with electromagnets affects the levitation performance because its feedback control system is more sensitive to vibration of bogie structure. The flexible multibody dynamic model of a 1/2 Maglev vehicle under test is presented. The basic modeling procedure is almost the same as in other applications. However, the feedback control system model unique in EMS-type maglev vehicle must be included in the model. With the model proposed in this study, the dynamic behavior, load history and levitation performance are more precisely predicted. This model could realize the virtual prototyping in EMS-type Maglev vehicle area.

  • PDF

Asymptotic Decoupled Control of Induction Motors for High Dynamic Performance (동적 고성능 응답을 위한 유도전동기의 근사적 비간섭 제어)

  • 김동일;고명삼;하인중;박재화
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.877-887
    • /
    • 1989
  • In this paper, we attempt to achieve high dynamic performance by means of decoupled control of rotor speed and flux. Recently developed nonlinear feedback control theories are utilized. The rotor fluxes are estimated based on the rotor circuit equations. When the estimation error of the rotor flux tends to zero, the rotor speed and flux dynamic characteristics of the induction motor with our controller become linear. To minimize the deterioration of control performance, we use an identification algorithm for the rotor resistance. We analyze the dynamic behavior of the closed loop system with our controller. Both simulation and experimental results are included to demonstrate the practical significance of our result. In particular, our experimental results show that recently developed nonlinear feedback control techniques are of practical use in control of induction motors.

  • PDF

Feedback Linearzing Control of Brushless DC Motors (일반적인 형태의 역기전력을 갖는 브러쉬 업는 직류 전동기의 궤환 선형화 제어)

  • 강창익;하인중;송중환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.982-990
    • /
    • 1994
  • In this paper, we consider feedback-kinearizing control of brushless dc motors which have been increasingly used in high-performance servo applications, We completely characterize the whole class of the feedback controllers that enable the brushless dc motors to behave like linear systems but without torque ripple. The whole class of the feedback-linearizing controllers is characterized in the explicit form which contains a function to be chosen freely. The previously known controllers correspond to either the particular ones in our whole class of the feedback-Linearzing controllers or their truncated Fourier expansions. This free function can be used to achieve other control objectives as well as linear dynamic characteristics. Furthermore, our feedback-linearizing controllers can be easily determined from the measurement data of back EMF.

  • PDF

On optimal state feedback scheme to a position control system by the state observer (상태관측기에 의한 위치제어계의 최적 설계에 관한 연구)

  • 장세훈;박순규
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 1982
  • This paper intends to compare and illustrate the feedback effects of the state feedback scheme to a positional control system by the use of the state observer. As a case study, the dynamic properties of a proposed positional control system lie derived, first, and the design of an optimal state feedback control system by the actual states is intended as a primary case study. For the illustration of the feedback effects with the asymptotic state observer, unobservability of some state variables are assumed and an optimal state feedback design is carried by using the estimated states which is reconstructed through the observer. That is, when some of the states of the system to be controlled are not avalable, an observer is constructed to estimate the unaccessable states. Adigital computer is used for the comparative study of the feedback effects in both cases. The resultant response of the proposed system have shown quite reasonable satisfaction oncontrol quality.

  • PDF

A Study Compensation Method for Dynamic Characteristics in Electro-Hydraulic Servosystem Equipping Load Pressure Feedback Compensator (부하압력 피이드백 보상기를 장착한 전기-유압서보계의 동특성 개선에 관한 연구)

  • Kim, Jong-Kyum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.126-136
    • /
    • 1992
  • In this paper, a simple structured feedback compensation scheme for a electro-hydraulic servo system to keep the response characteristics unchanged regardless of the load variation is proposed. In electro-hydraulic servo system, servovalve is most important control element. But the relation between input corrent and output flowrate of the servovalve has properties as follows; firstly, in spite of constant input current, output flowrate decreases as load pressure increases, secondly, according to frequency response of typical servovalve, the characteristics of gain and phase shift is something like 2'nd order system. Load pressure feedback compensation method has been applied to eliminate the first influence, the second influence has been improved by phase lead compensation method. As a result of above compensation methods, regardless of variation load condition, spring and inertia load, the compensation scheme has been verified to be effective within the range of frequency less than 25Hz by static response and dynamic response in time domain and frequency domain through experiments.

  • PDF