• Title/Summary/Keyword: Dynamic Displacement Sensitivity

Search Result 53, Processing Time 0.026 seconds

A Study on Design and Control of Tracking Actuator in Optical Disc (광디스크용 트랙킹 구동기의 설계 및 제어에 관한 연구)

  • 최인묵;한창수;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.454-457
    • /
    • 1995
  • In optical disc system, tracking actuator is consisted of coarse actuator and fine tracking actuator. This, two-stage actuator, requires many devices and two servos for large stroke and precisional displacement. These complicate configuration increases moving mass. So dynamic characteristics become bad, that is, sensitivity of high frequency gain decrease. In this paper, frequency performance is willing to be better as so one dimensional tracking actuator is designed. In order to investigate the performance of the proposed tracking actuator, the Bode diagram is plotted with Dynamic analyzer and friction characteristic is explained. Finally, tracking error performance is ins investigated into 0.1 .mu.m resolution with MATLAB simulation.

  • PDF

Characteristics of Dynamic Strain Aging(DSA) in SA106Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.771-776
    • /
    • 1995
  • Tensile and J-R tests were carried out to estimate the effects of dynamic strain aging(DSA) on SA106Gr.C piping steel. Tensile tests were performed under temperature range RT to $400^{\circ}C$ md strain rates from $1.39{\times}10^{-4}\;to\;6.95{\times}10^{-2}/s$. Fracture toughness was tested in the temperature range RT to $350^{\circ}C$ and load-line displacement rates 0.4 and 4mm/min. The effects of DSA on the tensile properties were clearly observed for phenomena such serrated flow, variation of ultimate and yield stress, and negative stram rate sensitivity. However, the magnitude of serration and strength increase by DSA was relatively small. this may be due to high ratio of Mn to C. In addition, crack initiation resistance, Ji and crack growth resistance, dJ/da were reduced in the range of $200-300^{\circ}C$, where DSA appeared as serrated flow and UTS hardening. The temperature corresponding to minimum fracture resistance was shifted to higher temperature with increasing loading rate.

  • PDF

Development of A Small VCM Focusing Actuator Using Curved Suspensions (곡선 서스펜션을 사용한 초소형 VCM 포커싱 구동기 개발)

  • Shin, Young-Chul;Lee, Seung-Yop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2008
  • This paper proposes small VCM(voice coil motor) type, auto-focusing and zoom actuators for mobile information devices. In order to meet the large output displacement within small height restriction, the proposed auto-focusing actuator adopts curved suspensions, which are similar to a leaf-spring type suspension of optical disk drives. The sensitivity of design parameters on output displacement and dynamic performance is implemented using ANSYS (3D FEM tool) to determine the optimal geometry and stiffness of the curved suspensions. This paper also investigates a new zoom actuator without a suspension supporting a bobbin. The zoom actuator uses a moving rail and a stoper mechanism by generating rotational force at lens holder. Magnetic flux density of the zoom actuator are calculated by both the FEM and permeance method. Experiments using prototypes of the proposed focusing and zoom models show that both actuators meet the required displacement and performance.

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Global Sensitivity Analysis of Joints for Plug-in Digital Framework (플러그인 디지털 프레임웍을 위한 연결부 전역민감도 해석)

  • Lee, Dooho;Won, Young-Woo;Kwon, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Plug-In Digital Framework is a system response analysis tool that is employed when system components are composed of black-box modules. Generally, the dynamic characteristics of joints between the system components significantly affect system responses, and they lead to displacement- and frequency-dependent stiffness and loss factor. Thus, the sensitivity of each joint parameters should be estimated from a global perspective. In this study, we introduce a global sensitivity analysis procedure under the Plug-In Digital Framework. To efficiently calculate the system responses, we introduce the frequency response function (FRF)-based substructuring method. Using the random balance designs (RBD), we generate the system responses and estimate the global first-order sensitivities for each joint stiffness. We apply the proposed global sensitivity analysis method to an interior noise problem of a passenger car, and we evaluate the efficiency of the global sensitivity analysis method.

Vehicle/track dynamic interaction considering developed railway substructure models

  • Mosayebi, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.775-784
    • /
    • 2017
  • This study is devoted to developing many new substructure models for ballasted railway track by using the pyramid model philosophy. As the effect of railway embankment has been less considered in the previous studies in the field of vehicle/track interaction, so the present study develops the pyramid models in the presence of railway embankment and implements them in vehicle/track interaction dynamic analyses. Considering a moving car body as multi bodies with 10 degrees of freedom and the ballasted track including rail, sleeper, ballast, subgrade and embankment, two categories of numerical analyses are performed by considering the new substructure systems including type A (initiation of stress overlap areas in adjacent sleepers from the ballast layer) or type B (initiation of stress overlap areas in adjacent sleepers from the subgrade layer). A comprehensive sensitivity analyses are performed on effective parameters such as ballast height, sleepers spacing and sleeper width. The results indicate that the stiffness of subgrade, embankment and foundation increased by increasing the ballast height. Also, by increasing the ballast height, rail and ballast vertical displacement decreased.

Detection of Elastic Waves Using Stabilized Michelson Interferometer (광로차 보상회로가 부착된 마이켈슨 간섭계에 의한 탄성파 신호검출)

  • Kim, Y.H.;So, C.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.32-41
    • /
    • 1994
  • The stabilized Michelson interferometer was developed in order to measure micro dynamic displacement at the surface of solids due to elastic wave propagation. The stabilizer was designed to compensate light path disturbances using a reference mirror driven by piezoelectric actuator. Using stabilizer, the effect of external vibration was reduced and the quadrature condition was satisifed. As the results, the output of photodetector had maximum sensitivity and linearity. The minimum detectable displacement was 0.3nm at the band width of 10 MHz. The epicentral displacements due to the glass capillary breaks and the steel ball drop impact were measured using the developed interferometer and the results were compared with the calculated one.

  • PDF

Reliability analysis of latticed steel towers against wind induced displacement

  • Khan, M.A.;Siddiqui, N.A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.9-21
    • /
    • 2004
  • The present study aims at the reliability analysis of steel towers against the limit state of deflection. For this purpose tip deflection of the tower has been obtained after carrying out the dynamic analysis of the tower using modal method. This tip deflection is employed for subsequent reliability analysis. A limit state function based on serviceability criterion of deflection is derived in terms of random variables. A complete procedure of reliability computation is then presented. To study the influence of various random variables on tower reliability, sensitivity analysis has been carried out. Design points, important for probabilistic design of towers, are also located on the failure surface. Some parametric studies have also been included to obtain the results of academic and field interest.

Development of A Small VCM Focusing Actuator (초소형 VCM 포커싱 액츄에이터 개발)

  • Shin, Young-Chul;Lee, Seung-Yop;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.750-755
    • /
    • 2005
  • This paper proposes a small VCM (Voice coil motor) type actuator using curved suspensions for auto-focusing and zoom motions for mobile information devices. 1'he proposed focusing actuator adopts a nontraditional type of suspension using curved beams in order to extend output displacement within small height restriction. The curved beam is similar to the leaf spring type which is usually used in optical disk drives. In addition, three different materials are considered for the curved suspension model, and Aluminum shows the best dynamic characteristics. The proposed zoom actuator does not use a suspension supporting bobbin but a moving rail and a sloper mechanism by generating rotational force at lens holder. The sensitivity of design parameters on output performance is studied using ANSYS (3D FEM tool). Experiments using a prototype of the proposed actuator model verified the analytical prediction and performance.

  • PDF