• 제목/요약/키워드: Dynamic Design Elements

검색결과 393건 처리시간 0.026초

시뮬레이션에 의한 관절대차 현가요소 민감도 해석 (Simulation-based Sensitivity Analysis of Suspension Elements of an Articulated Bogie)

  • 한형석
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.201-207
    • /
    • 2003
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance indices. Suspension elements of 10 and a conicity of wheel are used as design variables. To analyze sensitivity of design variables. the railway vehicle dynamics analysis program AGEM is used. The results show that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability. The safety is not effected by all the design variables.

경량전철용 관절대차 현가요소의 민감도 해석 (Sensitivity Analysis of Suspension Elements of an Articulated Bogie for Light Railway Vehicles)

  • 한형석;허신;하성도;조동현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.421-428
    • /
    • 1998
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance index. Suspension elements of 10 and a conicity of wheel are used as design variables, To analyze sensitivity of design variables, the railway vehicle dynamics analysis program AGEM is used. The results shows that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability, The safety is not effected by all the design variables.

  • PDF

Continuous size optimization of large-scale dome structures with dynamic constraints

  • Dede, Tayfun;Grzywinski, Maksym;Selejdak, Jacek
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.397-405
    • /
    • 2020
  • In this study size optimization of large-scale dome structures with dynamic constraints is presented. In the optimal design of these structure, the Jaya algorithm is used to find minimal size of design variables. The design variables are the cross-sectional areas of the steel truss bar elements. To take into account the constraints which are the first five natural frequencies of the structures, the finite element analysis is coded in Matlab programs using eigen values of the stiffness matrix of the dome structures. The Jaya algorithm and the finite elements codes are combined by the help of the Matlab - GUI (Graphical User Interface) programming to carry out the optimization process for the dome structures. To show the efficiency and the advances of the Jaya algorithm, 1180 bar dome structure and the 1410 bar dome structure were tested by taking into the frequency constraints. The optimal results obtained by the proposed algorithm are compared with those given in the literature to demonstrate the performance of the Jaya algorithm. At the end of the study, it is concluded that the proposed algorithm can be effectively used in the optimal design of large-scale dome structures.

유전적 알고리듬을 적용하여 머시닝센터 베드두께의 동하중을 고려한 최적설계에 관한 연구 (A Study on the design Optimization of Thickness of Machiningcenter Bed under Dynamic Loading by using Genetic Algorithm)

  • 조백희
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 1999
  • This paper presents resizing design optimization method by utilizing genetic algorithm(GA), which consists of three basic operators : reproduction, crossover and mutation. The fitness and penalty function for resizing optimization problem are defined, and the flowchart of the developed computer program along with the descriptions of each modules is presented. Also, modelling for flexible-body dynamic analysis is presented. The model is composed of bodies, joints, and force elements such as translational spring-damper-actuator. The design objects si to determine the wall thickness for minimum weight under dynamic displacement constraint.

  • PDF

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.

감성유형에 따른 주거 실내디자인요소 적용방안 (A Study on Applications of Housing Interior Design Elements according to the Sensibility Type)

  • 박지민;박은선
    • 한국주거학회논문집
    • /
    • 제25권3호
    • /
    • pp.165-179
    • /
    • 2014
  • The purpose of this study was to draw application elements of housing interior design according to user-oriented sensibility types. The sensibility evaluation experiments were conducted to target the general user 118 people using the sensibility evaluation tool for housing interior space. The results of the analysis were as: To produce the 'cozy' space, the colors and materials giving soft and natural feeling should be used. For the 'practical' space, type of ceiling and window that give the visually open feeling, the user-oriented furniture arrangement that allows using the space efficiently. For the 'cheerful' space, the simple and natural effects should be produced by using closed space that stable. For the 'traditional' space, the natural fishing material having rough texture should be used. For the 'unique' space, the space contained the dynamic feeling by the diagonal or vertical line and the graphic expression in the wall. For the 'congenial' emotional space, basic is the symmetric, stable and simple space. On the other hand, for the material, small size, natural texture or typical and soft materials should be used. For the 'sensuous' space, the dynamic and vertical sense of space should be expressed by the type of ceiling. The most important elements for the space of 'gorgeous' sensibility, is the color.

체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구 (Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance)

  • 원준호;강광진;최주호
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 - (Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System -)

  • 박용환;신흥철;문희성;최종률
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF

빔과 스프링 요소를 이용한 승용차의 차체 프레임 설계 (A Design on the chassis frame of passenger car using beam and spring Elements)

  • 이동찬;이상호;한창수
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.89-96
    • /
    • 1999
  • This paper presents the optimization design technique on the joint stiffness and section characteristic factors of chassis frame, by using beam and spring elements in a given design package. Two correction methods are used for the optimization design of chassis frame. First is the equivalent inertia of moment method in relation to the section characteristic factors of joint zones, which are thickness , width and height of frame channel section. Second is the rotational spring element with joint stiffness of joint zones. The CAE example shows that the relationship of section characteristic factors and joint stiffness can effectively be used in designing chassis frame. In this point, if static and dynamic targets are given, the joint-zone and section characteristic factors of chassis frame intended may be designed and defined by using beam and rotational spring elements.

  • PDF