• 제목/요약/키워드: Dynamic Design Analysis Method

검색결과 1,559건 처리시간 0.027초

한국형 고속전철 현가장치 최적설계를 위한 반응표면모델과 유전자 알고리즘 모델에 관한 연구 (A study on the response surface model and the neural network model to optimize the suspension characteristics for Korean High Speed Train)

  • 박찬경;김영국;김기환;배대성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.589-594
    • /
    • 2004
  • In design of suspension system for KHST, it was applied the approximated optimization method using meta-models which called Response Surface Model and Neural Network Model for 29 design variables and 46 performance index. These models was coded using correlation between design variables and performance indices that is made by the 66 times iterative execution through the design of experimental table consisted orthogonal array L32 and D-Optimal design table. The results show that the optimization process is very efficient and simply applicable for complex mechanical system such as railway vehicle system. Also it was compared with the sensitivity of some design variables in order to know the characteristics of two models. This paper describes the general method for dynamic analysis and design process of railway vehicle system applied to KHST development, and proposed the efficient methods for vibration mode analysis process dealing with test data and the function based approximation method using meta-model applicable for a complex mechanical system. This method will be able to apply to the other railway vehicle system in oder to systematize and generalize the design process of railway vehicle dynamic system.

  • PDF

Dynamic analysis of maritime gasbag-type floating bridge subjected to moving loads

  • Wang, Huan-huan;Jin, Xian-long
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.137-152
    • /
    • 2016
  • This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE) method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the natural frequencies and flexural mode shapes were analyzed. Based on the initial state analysis, the dynamic responses of the floating bridge subjected to different moving loads were investigated. Vertical displacements and radial deformations of gasbags under different loads were compared, and principal stress distributions of gasbags were researched while driving. The hinge forces between adjacent modules were calculated to ensure the connection strength. Besides, the floating bridge under wave impacting was analyzed. Those results can provide references for the analysis and design of this new floating bridge.

HDD용 유체베어링 설계를 위한 형상 모델링의 자동화 (Automation of Feature Modeling for HDD Fluid Dynamic Bearing Design)

  • 이남훈;권정민;구자춘
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.148-155
    • /
    • 2005
  • As functional requirement of massive digital information storage devices are on a trend for the higher data transfer rate and lower cost, many different technical efforts are being tested and implemented in the industry. FDB(fluid dynamic bearing) is one of the major breakthroughs in rotor design in terms of TMR(track misregistration) budget. Although FDB analysis based on Reynolds' equation is well established and popularly being used for FDB design especially for the estimation of bearing stiffness, there are obvious limitations in the approach due to the inherent assumptions. A generalized analysis tool employing the full Navier-Stokes equation and the energy balance is to be beneficial for detailed FDB design. In this publication, an efficient geometry modeling method is presented that provides fully integrated inputs for general FVM/FDM(finite volume method/ finite difference method) codes. By virtue of the flexibility of the presented method, many different detailed FDB design and analysis are carried over with ease.

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

반강접 접합부를 고려한 철골 구조물의 2차 탄성 해석 및 최적설계 (Second-Order Elastic Analysis and Optimum Design Considering Semi-Rigid Connection for Steel Structures)

  • 구본율;박춘욱;강성원;강문명
    • 한국공간구조학회논문집
    • /
    • 제3권1호
    • /
    • pp.35-46
    • /
    • 2003
  • Conventional analysis and design of steel structures are performed using the assumption of a either fully rigid or pinned. However, every steel connection lies in between fully rigid and pinned connection. So, It is important to consider the connection for steel structure design. In this paper Computer-based second-order elastic analysis is used to calculate one story two bay and two story three bay for steel structures with semi-rigid connection. Genetic Algorithms(GAs) and Sequential Unconstrained Minized Technique(SUMT) dynamic programming is used to the method for optimum design of steel structures. The efficiency and validity of the developed continuous and discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

가상고정점기법이 적용된 잔교식 구조물의 응답스펙트 럼해석법 개선사항 도출 연구 (Study on the Improvement of Response Spectrum Analysis of Pile-supported Wharf with Virtual Fixed Point)

  • 윤정원;한진태
    • 한국지진공학회논문집
    • /
    • 제22권6호
    • /
    • pp.311-322
    • /
    • 2018
  • As a method of seismic-design for pile-supported wharves, equivalent static analysis, response spectrum analysis, and time history analysis method are applied. Among them, the response spectrum analysis is widely used to obtain the maximum response of a structure. Because the ground is not modeled in the response spectrum analysis of pile-supported wharves, the amplified input ground acceleration should be calculated by ground classification or seismic response analysis. However, it is difficult to calculate the input ground acceleration through ground classification because the pile-supported wharf is build on inclined ground, the methods to calculate the input ground acceleration proposed in the standards are different. Therefore, in this study, the dynamic centrifuge model tests and the response spectrum analysis were carried out to calculate the appropriate input ground acceleration. The pile moment in response spectrum analysis and the dynamic centrifuge model tests were compared. As a result of comparison, it was shown that the response spectrum analysis results using the amplified acceleration in the ground surface were appropriate.

유한요소해석을 이용한 워터펌프 베어링돌출 설계 개선 (Design Modification of Bearing Walkout of Water Pump by a Finite Element Analysis)

  • 양철호;한문식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.164-169
    • /
    • 2006
  • A systematic methodology has been proposed to establish a reliable design of water pump system. A simplified steady-state dynamic model of water pump system has been developed to study the response of water pump system to the dynamic load mainly due to the run-out and unbalance. Design modifications are needed to strengthen the structural integrity of existing designs. Increasing the natural frequency of system is pursued to prevent a resonance from occurring in the engine excitation range. A computational reliability methodology combined with finite element analysis is used to identify the most significant factor affecting the system performance. This method considered influence of design control parameters for the performance of design. By including control factors to the system model in a systematic way, more reliable design is expected.

내진설계를 위한 지진 입력하중 조정 방법 (Method of the Calibration of earthquake Ground Motions for Seismic Design)

  • 공도환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.20-27
    • /
    • 1998
  • In the current seismic design codes design earthquake is usually defined as the earthquake with the 90 percent probability of not being exceeded in the life time of a structure which is assumed as 50 years equivalent to the earthquake with 475 year recurrence period. However the life time of tall building structures may be much longer than 50 yers. The current seismic design code requires the modal analysis or dynamic time history analysis for the buildings with the height exceeding a certain height limit. The objective of this study is to collect the earthquake ground motion(EQGM) which can be used for dynamic time history analysis for tall buildings. For this purpose linear elastic design response spectrum (LEDRS) in the code is scaled to account for the recurrence period of the design earthquake. The earthquake ground motions which has been recorded are calibrated to fit the scaled LEDRS. The set of calibrated EQGM can be treated as design EQGM for the design of tall building with longer lifetime than ordinary building.

  • PDF

Timoshenko 이론과 유한요소법을 이용한 모터내장형 고속주축계의 정특성/동특성 해석시스템 개발 (Development of a Static and Dynamic Analysis System for Motor-Integrated High-Speed Spindle Systems Using Timoshenko Theory and Finite Element Method)

  • 이용희;김석일;김태형;이재윤
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.11-16
    • /
    • 1998
  • Recently, the motor-integrated spindle systems have been used to simplify the machine tool structure, to improve the motion flexibility of machine tool, and to perform the high-speed machining. In this study, a static and dynamic analysis system for motor-integrated high-speed spindle systems is developed based on Timoshenko theory, finite element method and windows programming techniques. Since the system has various analysis modules related to static deformation analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically the design and evaluation processes of motor-integrated high-speed spindle systems under windows GUI environment.

  • PDF