• Title/Summary/Keyword: Dynamic Deflection

Search Result 475, Processing Time 0.029 seconds

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Nonlinear vibration of Mindlin plate subjected to moving forces including the effect of weight of the plate

  • Wang, Rong-Tyai;Kuo, Nai-Yi
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.151-164
    • /
    • 1999
  • The large deflection theory of the Mindlin plate and Galerkin's method are employed to examine the static responses of a plate produced by the weight of the plate, and the dynamic responses of the plate caused by the coupling effect of these static responses with a set of moving forces. Results obtained by the large deflection theory are compared with those by the small deflection theory. The results indicate that the effect of weight of the plate increases the modal frequencies of the structure. The deviations of dynamic transverse deflection and of dynamic bending moment produced by a moving concentrated force between the two theories are significant for a thin plate with a large area. Both dynamic transverse deflection and dynamic bending moment obtained by the Mindlin plate theory are greater than those by the classical plate.

Dynamic Behavior of Plane Parabolic Arches with Initial Deflections (초기 처짐을 갖는 평면 포물선 아치의 동적 거동)

  • Cho , Jin-Goo;Park, Keun-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.67-75
    • /
    • 2004
  • This study aims to investigate the dynamic behaviour of a parabolic arch with initial deflection by using the elasto-plastic finite element model where the von-Mises yield criteria have been adopted. The initial deflection of arch was assumed by the high order polynomial of ${\omega}_i$ = ${\omega}_o$${(1-{(2x/L)}^m)}^n$) and the sinusoidal profile of ${\omega}_i$ = ${\omega}_o$$\sin$(n$\pi$x/L). Several numerical examples were tested considering symmetric initial deflection modes when the maximum initial deflection of an arch is fixed as L/500, L/1000, L/2000 or L/5000. The effects of polynomials order on the dynamic behavior of arch were not conspicuous. The most unfavorite dynamic response occurs when the maximum initial deflection varies from L/1000 to L/4000 if the initial deflection mode is represented by high order polynomials.

A Case Study on GNSS Based Deflection and Dynamic Characteristics Monitoring Analysis for SeoHae Bridge

  • Lee, Jae Kang;Kim, Jung Ok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.389-404
    • /
    • 2017
  • The main purpose of this presented investigation is to build up the BHMS based on GNSS. This proposed monitoring system can conduct the deflection and dynamic characteristics analysis by using only GNSS positioning solution. The general bridge monitoring system being operated recently is composed of a combination of various sensors that are able to conduct deflection monitoring and dynamic characteristics monitoring analysis at the same time. However, GNSS based BHMS has the unique procedure in terms of data analysis. In the other words, GNSS positioning solution is firstly applied to deflection monitoring analysis then, this deflection analysis can be sequentially reflected in the dynamic characteristics. Unfortunately, the adjustment result of GNSS positioning solution estimated through various options and conditions and the process of monitoring analysis has not been fulfilled systematically. This means that different results or analysis value are presented according to the methodology and officers. Most of researches have been focusing on deflection monitoring analysis and some investigation regarding to dynamic characteristics is recently introduced. Moreover, it is not still reported the systematic investigation with regards to proper filtering and analysis methodology. This study was carried out based on a large amount of data, from this, various variables not reported yet are actively considered. Therefore, specific software for both monitoring analysis have been developed.

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

Static and dynamic bending of ball reinforced by CNTs considering agglomeration effect

  • Chenghong Long;Dan Wang;H.B. Xiang
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.419-428
    • /
    • 2023
  • In this paper, dynamic and static bending of ball modelled by nanocomposite microbeam by nanoparticles seeing agglomeration is presented. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The football ball is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the maximum dimensionless dynamic deflection is reduced about 17%. In addition, assuming CNTs agglomeration increases the dimensionless dynamic deflection about 14%. It is also found that with increasing the CNTs volume percent from 0 to 0.15, the static deflection is decreased about 3 times due to the enhance in the stiffness of the structure. In addition, with enhancing the nonlocal parameters, the dynamic deflection is increased about 3.1 times.

A Dynamic Response Analysis about Real Train Loads of the Preflex Railway Bridge (Preflex 철도교량의 실 운행열차하중에 대한 동적응답 분석)

  • Oh Ji-Tack;Kim Hyun-Min;Choi Eun-Soo;Lee Tac-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1021-1027
    • /
    • 2004
  • This research analyzed dynamic responses of the preflex railroad bridge. Vertical deflection and acceleration induced by operating train loads and test train loads were measured. Deflection of bridge by train traveling satisfies deflection limitation regulation (L/800) about the concrete bridge, but compare with UIC standard, vibration acceleration happened fairly greatly. Also test result show that acceleration receives greatly effect about the speed than deflection. It must discuss about vibration acceleration problems for speed elevation hereafter.

  • PDF

Dynamic Responses and Fuzzy Control of a Simply Supported Beam Subjected to a Moving Mass

  • Kong, Yong-Sik;Ryu, Bong-Jo;Shin, Kwang-Bok;Lee, Gyu-Seop;Lee, Hong-Gi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1371-1381
    • /
    • 2006
  • This paper deals with the active vibration control of a simply-supported beam traversed by a moving mass using fuzzy control. Governing equations for dynamic responses of a beam under a moving mass are derived by Galerkin's mode summation method, and the effect of forces (gravity force, Coliolis force, inertia force caused by the slope of the beam, transverse inertia force of the beam) due to the moving mass on the dynamic response of a beam is discussed. For the active control of dynamic deflection and vibration of a beam under the moving mass, the controller based on fuzzy logic is used and the experiments are conducted by VCM (voice coil motor) actuator to suppress the vibration of a beam. Through the numerical and experimental studies, the following conclusions were obtained. With increasing mass ratio y at a fixed velocity of the moving mass under the critical velocity, the position of moving mass at the maximum dynamic deflection moves to the right end of the beam. With increasing velocity of the moving mass at a fixed mass ratio ${\gamma}$, the position of moving mass at the maximum dynamic deflection moves to the right end of the beam too. The numerical predictions of dynamic deflection of the beam have a good agreement with the experimental results. With the fuzzy control, more than 50% reductions of dynamic deflection and residual vibration of the tested beam under the moving mass are obtained.

Dynamic Response Analysis of a Heavy Duty Gas Turbine-Generator with Rigid Coupling Offset (고정 커플링의 오프셋을 갖는 발전용 가스터빈-발전기의 동적 응답해석)

  • Ha, Jin Woong;Jung, Dae Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.70-75
    • /
    • 2014
  • In this paper a analysis method is presented to obtain the steady state dynamic response from the finite element based equations of a rotor-bearing system with initial deflection. The method has been applied to analyze the dynamic response of the two-shaft rotor-bearing system with rigid coupling offset in a heavy duty gas turbine-generator. Bumps in the dynamic response of each rotor system have been observed at each critical speed due to the effect of initial deflection for rigid coupling offset. And, the dynamic responses have been shown to reduce for operating condition changes from cold to hot.