• Title/Summary/Keyword: Dynamic Comparator

Search Result 41, Processing Time 0.026 seconds

Static Var Compensator Using Current Source PWM Converter (전류형 PWN 콘버어터의 희한 정지형 무효전력 보상장치에 관한연구)

  • 김철우;권순재;김광태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1183-1190
    • /
    • 1990
  • In this paper, instantaneous reactive power compensation algorithm is proposed and analyzed. The static Var generator developed in this paper is the current source PWM converter using hysteresis comparator method, which compensates the reactive power by detecting each instantaneous phase voltage and line current, independently. Some aspects on the static Var compensator-such as inductance, capacitance, hysteresis width, and switching frequency, etc.-are discussed. The dynamic performances are examined through digital simulation and experimental test.

  • PDF

A 10-bit 10MS/s differential straightforward SAR ADC

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Lee, Dong-Soo;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • A 10-bit 10MS/s low power consumption successive approximation register (SAR) analog-to-digital converter (ADC) using a straightforward capacitive digital-to-analog converter (DAC) is presented in this paper. In the proposed capacitive DAC, switching is always straightforward, and its value is half of the peak-to-peak voltage in each step. Also the most significant bit (MSB) is decided without any switching power consumption. The application of the straightforward switching causes lower power consumption in the structure. The input is sampled at the bottom plate of the capacitor digital-to-analog converter (CDAC) as it provides better linearity and a higher effective number of bits. The comparator applies adaptive power control, which reduces the overall power consumption. The differential prototype SAR ADC was implemented with $0.18{\mu}m$ complementary metal-oxide semiconductor (CMOS) technology and achieves an effective number of bits (ENOB) of 9.49 at a sampling frequency of 10MS/s. The structure consumes 0.522mW from a 1.8V supply. Signal to noise-plus-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 59.5 dB and 67.1 dB and the figure of merit (FOM) is 95 fJ/conversion-step.

A Study on Design of the Trip Computer for ECC System Based on Dynamic Safety System

  • Kim, Seog-Nam;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.316-327
    • /
    • 2000
  • The Emergency Core Cooling System in current nuclear power plants typically has a considerable number of complex functions and largely cumbersome operator interfaces. Functions for initiation, switch-over between various phases of operation, interlocks, monitoring, and alarming are usually performed by relays and analog comparator logic which are difficult to maintain and test. To improve problems of an analog based ECC (Emergency Core Cooling) System, the trip computer for ECCS based on Dynamic Safety System (DSS) is implemented. The DSS is a computer based reactor protection system that has fail-safe nature and performs a dynamic self-testing. The most important feature of the DSS is the introduction of test signal that send the system into a tripped state. The test signals are interleaved with the plant signals to produce an output which switches between a tripped and health state. The dynamic operation is a key feature of the failsafe design of the system. In this work, a possible implementation of the DSS using PLC is presented for a CANDU Reactor. ECC System of the CANDU Reactor is selected as the reference system.

  • PDF

Improvement of Dynamic Response for IPMSM based on DTC-CFTC Using Sliding Mode Control (일정 스위칭 주파수를 가지는 DTC 기반 IPMSM의 슬라이딩 모드 제어를 이용한 속응성 향상)

  • Han, Byeol;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.628-635
    • /
    • 2019
  • This paper proposes sliding mode control (SMC) method for improvement of dynamic response for IPMSM based on DTC with constant switching frequency. DTC with constant switching frequency method consists of PI torque controller and triangular comparator for constant torque error status. It has the poor dynamic response compared to conventional DTC. This paper proposes improvement method of dynamic response of DTC with constant switching frequency by using SMC. Simulation results confirm the effectiveness of the proposed method.

The Analysis of Total Ionizing Dose Effects on Analog-to-Digital Converter for Space Application (우주용 ADC의 누적방사선량 영향 분석)

  • Kim, Tae-Hyo;Lee, Hee-Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.85-90
    • /
    • 2013
  • In this paper, 6bit SAR ADC tolerant to ionizing radiation is presented. Radiation tolerance is achieved by using the Dummy Gate Assisted (DGA) MOSFET which was proposed to suppress the leakage current induced by ionizing radiation and its comparing sample is designed with the conventional MOSFET. The designed ADC consists of binary capacitor DAC, dynamic latch comparator, and digital logic and was fabricated using a standard 0.35um CMOS process. Irradiation was performed by Co-60 gamma ray. After the irradiation, ADC designed with the conventional MOSFET did not operate properly. On the contrary, ADC designed with the DGA MOSFET showed a little parametric degradation of which DNL was increased from 0.7LSB to 2.0LSB and INL was increased from 1.8LSB to 3.2LSB. In spite of its parametric degradation, analog to digital conversion in the ADC with DGA MOSFET was found to be possible.

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

Time Pickoff method using an Automatic Gain Control (자동 이득 조절(AGC) 기반의 Time pickoff 회로)

  • Lim, Han-Sang
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.80-85
    • /
    • 2011
  • A time-pickoff circuit used for time measurement suffers from a timing error due to the dependence of the generation time of a timing pulse on the size of the input signal, i.e., time walk. In this study, a time-pickoff method, which employs an automatic gain control (AGC) circuit, is proposed for reducing the timing error. The AGC circuit is added to the input of the comparator, and it renders the sizes of input signals of the comparator relatively uniform. The performance of the proposed time-pickoff method is analyzed using the SPICE simulation, and experiments are performed to confirm the analytical results. The measured time walk is reduced to 2.000 ns by 65% for input signals with a dynamic range of 20 dB as compared to a typical leading-edge discriminator.

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

A Low-Voltage Low-Power Opamp-Less 8-bit 1-MS/s Pipelined ADC in 90-nm CMOS Technology

  • Abbasizadeh, Hamed;Rikan, Behnam Samadpoor;Lee, Dong-Soo;Hayder, Abbas Syed;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.416-424
    • /
    • 2014
  • This paper presents an 8-bit pipelined analog-to-digital converter. The supply voltage applied for comparators and other sub-blocks of the ADC were 0.7V and 0.5V, respectively. This low power ADC utilizes the capacitive charge pump technique combined with a source-follower and calibration to resolve the need for the opamp. The differential charge pump technique does not require any common mode feedback circuit. The entire structure of the ADC is based on fully dynamic circuits that enable the design of a very low power ADC. The ADC was designed to operate at 1MS/s in 90nm CMOS process, where simulated results using ADS2011 show the peak SNDR and SFDR of the ADC to be 47.8 dB (7.64 ENOB) and 59 dB respectively. The ADC consumes less than 1mW for all active dynamic and digital circuitries.

Design of a 6bit 250MS/s CMOS A/D Converter using Input Voltage Range Detector (입력전압범위 감지회로를 이용한 6비트 250MS/s CMOS A/D 변환기 설계)

  • Kim, Won;Seon, Jong-Kug;Jung, Hak-Jin;Piao, Li-Min;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.16-23
    • /
    • 2010
  • This paper presents 6bit 250MS/s flash A/D converter which can be applied to wireless communication system. To solve the problem of large power consumption in flash A/D converter, control algorithm by input signal level is used in comparator stage. Also, input voltage range detector circuit is used in reference resistor array to minimize the dynamic power consumption in the comparator. Compared with the conventional A/D converter, the proposed A/D converter shows 4.3% increase of power consumption in analog and a seventh power consumption in digital, which leads to a half of power consumption in total. The A/D converter is implemented in a $0.18{\mu}m$ CMOS 1-poly 6-metal technology. The measured results show 106mW power dissipation with 1.8V supply voltage. It shows 4.1bit ENOB at sampling frequency 250MHz and 30.27MHz input frequency.