• Title/Summary/Keyword: Dynamic

Search Result 39,366, Processing Time 0.054 seconds

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material (등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.

Experimental research on dynamic characteristics of frozen clay considering seasonal variation

  • Xuyang Bian;Guoxin Wang;Yuandong Li
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • In order to study the soil seasonal dynamic characteristics in the regions with four distinct seasons, the soil dynamic triaxial experiments were conducted by considering the environmental temperature range from -30℃ to 30℃. The results demonstrate that the dynamic soil properties in four seasons can change greatly. Firstly, the dynamic triaxial experiments were performed to obtain the dynamic stress-strain curve, elastic modulus, and damping ratio of soil, under different confining pressures and temperatures. Then, the experiments also obtain the dynamic cohesion and internal friction angle of the clay under the initial strain, and the changing rule was summarized. Finally, the results show that the dynamic elastic modulus and dynamic cohesion will increase significantly when the clay is frozen; as the temperature continues to decrease, this increasing trend will gradually slow down, and the dynamic damping ratio will go down when the freezing temperature decreases. In this paper, the change mechanism is objectively analyzed, which verifies the reliability of the conclusions obtained from the experiment.

Integrated Dynamic Simulation of a Magnetic Bearing Stage and Control Design (자기베어링 스테이지의 동적 거동 통합 시뮬레이션을 통한 제어 설계)

  • Kim, Byung-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.730-734
    • /
    • 2013
  • The dynamic simulation of machine tools and motion control systems has been widely used for optimization, design verification, control design, etc. There are three main streams in dynamic simulation: structural dynamic analysis based onthe finite element method, dynamic motion analysis based on equations of motion, and control system analysis based on transfer functions. Generally, one of these dynamic simulation methods is chosen and employed for specific purposes. In this study, an integrated dynamic simulation is introduced, in which the structure, motion, and control dynamics are combined together. Commercially well-known software is used in the integrated dynamic simulation: ANSYS, ADAMS, and Matlab/Simulink. Using the integrated dynamic simulation, the dynamics of a magnetic bearing stage is analyzed and the causes of oscillation and noise are identified. A controller design for suppressing a flexible dynamic mode is carried out and verified through the integrated dynamic simulation.

A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure (부방향 동압력을 이용한 압전형 압력센서의 교정기법)

  • Kim, Eung-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(II) A Study on the Stress Field, Displacement Field and Energy Release Rate in the Dynamic Mode III under Constant Crack Propagation Velocity (직교 이방성체의 동적 응력확대계수에 관한 연구 (II) 등속균열전파 속도하에서 동적모드 III 상태의 응력장, 변위장, 에너지해방률에 관한 연구)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.331-341
    • /
    • 1993
  • The propagating crack problems under dynamic antiplane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems by theoretical method or experimental method in orthotropic material, it is important to know the dynamic stress intensity factor in the vicinity of crack tip. Therefore the dynamic stress field and dynamic displacement field with dynamic stress intensity factor of orthotropic material in mode III were derived. When the crack propagation speed approachs to zero, the dynamic stress components and dynamic displacement components derived in this paper are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determined by using the concept of crack closure energy with the dynamic stresses and dynamic displacements derived in this paper. Finally, the characteristics of crack propagation are studied with the properties of orthotropic material and crack speed. The variation of angle .alpha. between fiber direction and crack propagating direction and crack propagation speed fairly effect on stress component and displacement component in crack tip. The influence of crack propagation speed on the speed on the stress and displacement is greater in the case of .alpha.=90.deg. than in the case of .alpha.=0.deg. and the faster the crack propagation speed, the greater the stress value and displacement value.

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF

An Analysis of Dynamic Cutting Force Model for Face Milling Using Modified Autoregressive Vector Model (자기회귀 벡터모델을 이용한 정면밀링의 동절삭력 모델해석)

  • 백대균;김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2949-2961
    • /
    • 1993
  • Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.

Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen (WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수)

  • 정석주;한민구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF