• 제목/요약/키워드: Dyeing & Finishing Process

검색결과 153건 처리시간 0.026초

리파제에 의한 양모/폴리에스터 혼방직물의 동시 개질 (Enzymatic Modification of Wool/Polyester Blend Fabrics Using Lipase from Aspergillus Oryzae)

  • 송현주;김혜림;송화순
    • 한국의류학회지
    • /
    • 제33권7호
    • /
    • pp.1121-1127
    • /
    • 2009
  • This study presents an eco-friendly and one-step finishing method for modifying fiber property that reduces fiber damage in wool/polyester blend fabrics. Lipase from aspergillus oryzae is used in this experiment. The enzymatic treatment condition is optimized by measuring the relative activity of lipase depending on pH level, temperature, concentration of lipase, and treatment time. The concentration of $CaCl_2$as an activator is determined by the characteristics including whiteness, water contact angle (WCA), and dyeing property. The modified properties of lipase treated fabrics are tested for pill resistance and surface morphology. The results are described as follows: the optimum condions for lipase treatment constitute a pH level of 8.0, treatment temperature of 40$^{\circ}$$_C$, concentration of lipase at 100% (o.w.f), and a treatment time of 90 minutes. $CaCl_2$helps in raising lipase activation, and the optimum concentration is 50mM. The whiteness, wet ability, and pill resistance of lipase treated fabrics improves as compared to the control. The dyeing property of lipase treated fabrics improved by 53.5% after using the one-bath dyeing method. This means that lipase treatment can save time and cost during the dyeing process since lipase treatment modifies wool and polyester fibers. The surface of lipase treated wool fibers do not exhibit any change, however voids and cracks manifest on the surface of lipase treated polyester fibers.

ECH(Epichlorohydrine)으로 처리한 리오셀 직물의 피브릴레이션 경향 및 염색성에 관한 연구 (Fibrillation tendency and Dyeing characteristic of Lyocell treated with Epichlorohydrine)

  • 박지양;김신희;박영환;전동원
    • 한국염색가공학회지
    • /
    • 제18권4호
    • /
    • pp.20-27
    • /
    • 2006
  • Lyocell is a not only environmentally-friendly but also very advantageous fiber. When Lyocell is soaked in water, its wet tenacity does not decrease and elongation and moisture regain of it are better than cotton. However, one drawback of lyocell is its fibrillation. The fibrills of lyocell were generated during wet process such as scouring and dyeing deteriorates the dyeing color depth and the appearance of fabric. The purpose of this study was to decrease the fibrillation tendency of lyocell fabric using crosslinking agent, epichlorohydrine(ECH). The effects of NaOH scouring and ECH crosslinking were observed. The different types of ECH addition methods to lyocell and the various concentrations of ECH in crosslinking reaction onto dyeing characteristic and fibriallation were investigated. Weight loss and whiteness index of crosslinked lyocell by ECH were examined. K/S values of ECH treated lyocell fabrics dyed with reactive dye were measured and SEM images of untreated and treated lyocells were observed extensively to define the fibrillation tendency. The results were as follows ; 1) ECH treatment showed the effect of weight loss and scouring because ECH crosslinking reaction was conducted in alkaline condition. 2) The increase in ECH concentration from 5 to 30% does not affected K/S value changes. 3) ECH crosslinking can effectively prevent the fibrillation tendency of lyocell.

Central Composite Design Matrix (CCDM) for Phthalocyanine Reactive Dyeing of Nylon Fiber: Process Analysis and Optimization

  • Ravikumar, K.;Kim, Byung-Soon;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제20권2호
    • /
    • pp.19-28
    • /
    • 2008
  • The objective of this study was to apply the statistical technique known as design of experiments to optimize the % exhaustion variables for phthalocyanine dyeing of nylon fiber. In this study, a three-factor Central Composite Rotatable Design (CCRD) was used to establish the optimum conditions for the phthalocyanine reactive dyeing of nylon fiber. Temperature, pH and liquor ratio were considered as the variable of interest. Acidic solution with higher temperature and lower liquor ratio were found to be suitable conditions for higher % exhaustion. These three variables were used as independent variables, whose effects on % exhaustion were evaluated. Significant polynomial regression models describing the changes on % exhaustion and % fixation with respect to independent variables were established with coefficient of determination, R2, greater than 0.90. Close agreement between experimental and predicted yields was obtained. Optimum conditions were obtained using surface plots and Monte Carlo simulation techniques where maximum dyeing efficiency is achieved. The significant level of both the main effects and interaction was observed by analysis of variance (ANOVA) approach. Based on the statistical analysis, the results have provided much valuable information on the relationship between response variables and independent variables. This study demonstrates that the CCRD could be efficiently applied for the empirical modeling of % exhaustion and % fixation in dyeing. It also shows that it is an economical way of obtaining the maximum amount of information in a short period of time with least number of experiments.

생쪽잎분말의 염색성 및 저장성(II) - 열풍 및 상온건조방법 - (Dyeing Properties and Storage Stability of Leaf Powder Prepared from Dyer's Knotweed(II) - by Hot Air and Room Temperature Drying Methods -)

  • 신윤숙;손겸희;류동일
    • 한국염색가공학회지
    • /
    • 제21권4호
    • /
    • pp.23-32
    • /
    • 2009
  • The objective of this study is to investigate the efficacy of leaf powder colorants as substitutes for traditional indigo dyeing. Leaf powder colorants were prepared by hot air($50^{\circ}C$) and room temperanrre($25^{\circ}C$) drying methods from fresh leaves. The presence of indigo in the leaf powder colorants was confirmed by UV/Visible absorption spectra. All the powder colorants showed broad absorption at 602 nm as same as synthetic indigo. Dyeing was done by reduction method with sodium hydrosulfite and sodium hydroxide. Leaf powder colorants produced blue color on silk fabrics, showing similar color to the one dyed traditionally with fresh juice extract. The powder colorants prepared at room temperature drying were more stable for long term storage than that prepared by hot air drying. Thus, the powder colorants prepared by room temperature drying was reduced and dyed in one-step process without sodium hydroxide in the dyebath for further investigate dyeing properties. K/S value of the fabric dyed without sodium hydroxide was much higher than one dyed with sodium hydroxide. Regardless of the addition of sodium hydroxide, rubbing fastness was fairly good showing above 4 rating. Fastness to dry cleaning and light of the fabrics dyed without sodium hydroxide were mote higher than that dyed in alkaline condition.

Effects of Treatments with Two Lipolytic Enzymes on Cotton/Polyester Blend Fabrics

  • Lee, So Hee;Song, Wha Soon
    • 한국의류학회지
    • /
    • 제37권8호
    • /
    • pp.1107-1116
    • /
    • 2013
  • This study examined the use of cutinase and lipase to process cotton/polyester blend fabric. Optimum treatment conditions for cutinase and lipase were investigated for cotton/polyester blend fabric. The properties of enzyme-treated fabrics were evaluated and compared in optimal treatment conditions. In addition, the possibility to provide an enzymatic finishing on blend fabrics using mixed enzymes in a two-step process were studied. The weight loss of cotton/polyester blend fabrics with Triton X-100 was 0.8% and the dyeing property of blend fabrics with calcium chloride increased by a factor of 1.2. The use of two enzymes in combination with cutinase and lipase in the presence of auxiliaries resulted in a cotton/polyester blend fabric weight loss of 0.8%. In addition, the dyeing properties of cotton/polyester blend fabrics improved by a factor of 1.5 and the moisture regain of cotton/polyester blend fabrics improved by a factor of 1.16. However, no marked loss was observed in tensile strength. The surface morphology of cotton/polyester blend fabrics is modified through a two-enzyme treatment. The treatment of cotton/polyester blend fabrics with cutinase and lipase maintains cotton strength and improves the moisture regain of polyester fabrics.

흑색 황화염료와 초극세사 나일론 스웨이드 부직포 직물의 Pad-steam 염색 및 염색성 평가 (Dyeing Properties of Ultra-fine Nylon Suede Non-woven Fabric with Sulphur Black Dye by Pad-steam Process)

  • 김민석;정대호;이미경;고재왕;이정훈;이승걸
    • 한국염색가공학회지
    • /
    • 제29권4호
    • /
    • pp.211-222
    • /
    • 2017
  • In this study, we investigated the dyeing properties of the ultra-fine nylon suede non-woven fabric with Sulphur black dye regarding to the effect of dye concentrations, reducing agent contents, sodium carbonate contents, antioxidant contents, immersion temperature and exposure time in air by pad-steam process. The optimal conditions of dyeing for the ultra-fine nylon suede non-woven fabric were determined with dye concentration of 30% o.w.f., reducing agent content of $9{\sim}13g/{\ell}$, sodium carbonate content of $1{\sim}4g/{\ell}$, antioxidant content of $1{\sim}5g/{\ell}$, immersion temperature of $70^{\circ}C$, exposure time of 20 minutes in air and immersion time of 1 minute, respectively. Meanwhile, the colorfastness to washing, the colorfastness to light, and the colorfastness to perspiration for dyed ultra-fine nylon suede non-woven fabric were achieved in the range of 4-5 grades. The formaldehyde and arylamine were not detected on the ultra-fine nylon suede non-woven fabric by KC tests.

탄닌 증량 효과에 따른 견섬유의 염색성과 물성 (Effect of Tannin-weighting Process in Dyeability and Physical Properties of Silk)

  • Kim, In Young
    • 한국염색가공학회지
    • /
    • 제6권4호
    • /
    • pp.62-71
    • /
    • 1994
  • The weighting increase varies with the condition of tannin-weight process and effects dyeability and physical properties of silk. The purpose of this study is to investigate the optimum condition of tannin-weighting process of silk and the effect of tannin-weighting process on dyeability and properties of silk. The methods of this study are first to examine the change according to the variables such as, weight increase of silk, temperature(30, 50, 70, 80, 9$0^{\circ}C$), time(30, 60, 120, 180, 240, 300min), tannin concentration(3, 5, 10, 20, 30g/l) in order to present the optimum condition, sencond to examine the change of the properties such as surface morphology, strength, elongation, mechanical values, dyeing condition, Basic and Acid dye absorption on silk which are tannin-weight processed in the optimum condition.

  • PDF

나일론과 양모/산성염료계에 대한 계면동전위적 연구 (Electrokinetic Studies on Nylon and Wool/Acid Dye System)

  • 박병기;김진우;김찬영
    • 한국염색가공학회지
    • /
    • 제1권1호
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF

제직 준비 공정특성이 PET 직물 감성에 미치는 영향 (Effect of the Weaving Preparatory Process Characteristics on the PET FabricsSensibility)

  • 김승진
    • 감성과학
    • /
    • 제11권1호
    • /
    • pp.123-129
    • /
    • 2008
  • 본 연구에서는 PET 직물의 물성개선과 품질의 향상을 위해 직물 제조 공정 중 제직준비공정인 ITY, P/W, 2-for-1공정에서 여러 가지 공정인자의 변화를 주어 염색 가공 공정을 거친 최종 11가지 직물의 역학적 특성치 및 각 공정별 시료의 물성을 측정하여 직물의 감성특성인 Handle, 의복성능 및 봉제성을 평가하여 직물 제조 공정특성이 직물 감성에 미치는 영향에 대해 분석하였다.

  • PDF

해도형 PET 극세사 트리코트 편성물의 감량 가공 및 블랙 색상의 염색성 평가 (Weight Reduction and Dyeing Characteristics of Sea-Island Type Ultramicrofiber PET Tricot Fabric with Black Color)

  • 강정민;김민구;이지은;고재왕;김일진;이재년;이동진;고성익;정대호;이승걸
    • 한국염색가공학회지
    • /
    • 제32권1호
    • /
    • pp.9-18
    • /
    • 2020
  • In this study, we conducted alkali hydrolysis on sea-island type PET ultramicrofiber tricot fabric and dyeing according to the various conditions with black disperse dye. Herein, we evaluated the weight loss rate and tensile strength according to the NaOH contents. The optimal alkali hydrolysis treatment conditions were set to 25 %omf NaOH with a treatment time of 60 min at 110 ℃, and average weight loss rate of the PET ultramicrofiber tricot fabric is about 23 %. The dyeing conditions were investigated with different dyeing temperatures(95-135 ℃), dyeing time(20-60 min), dye contents(2-10 %omf), dispersant contents(1-9 g/ℓ), pH buffer solution contents(1-9 g/ℓ), UV-absorbent contents(5-25 %omf) and reduction cleaning process conditions for black color. We obtained the optimum conditions of the dyeing with the dye contents of 8 %omf, the dispersant contents of 1 g/ℓ, the pH buffer solution contents of 1 g/ℓ, the UV-absorbent contents of 10 %omf, the dyeing temperature of 135 ℃ and the dyeing time of 40 min. The light colorfastness of dyed ultramicrofiber PET tricot fabric was good to excellent in the range of 4 to 5.