• Title/Summary/Keyword: Dye-Sensitized Solar Cells

Search Result 456, Processing Time 0.028 seconds

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Photovoltaic Behavior of Dye-sensitized Long TiO2 Nanotube Arrays

  • Kim, Sang-Mo;Kim, Hark-Jin;Kim, Yong-Joo;Lim, Goo-Il;Choi, Young-Sik;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4035-4040
    • /
    • 2011
  • Long $TiO_2$ nanotube (NT) arrays, prepared by electrochemical anodization of Ti foils, have been utilized as dye-adsorbing electrodes in dye-sensitized solar cells (DSCs). By anodizing for 1-24 hr and subsequent annealing, highly crystallized and tightly-adhered NT arrays were tailored to 11-150 ${\mu}m$ lengths, ~90 nm innerpore diameter and ~30 nm wall thickness. I-V curves revealed that the photovoltaic conversion efficiency (${\eta}$) was proportional to the NT length up to 36 ${\mu}m$. Beyond this length, the ) was proportional to the NT length up to ${\eta}$ was still steadily increased, though at a much lower rate. For example, an ${\eta}$ of 5.05% at 36 ${\mu}m$ was increased to 6.18% at 150 ${\mu}m$. Transient photoelectron spectroscopic analyses indicated that NT array-based DSCs revealed considerably higher electron diffusion coefficient ($D_e$) and life time (${\tau}_e$) than those with $TiO_2$ nanoparticles (NP). Moreover, the electron diffusion lengths ($L_e$) of the photo-injected electrons were considerably larger than the corresponding NT lengths in all the cases, suggesting that electron transport in NT arrays is highly efficient, regardless of tube length.

Electrochemical properties of metal salts polymer electrolyte for DSSC (금속염을 이용한 염료감응 태양전지의 고체전해질의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • Dye-sensitized solar cell(DSSC) have been considered one of the promising alternatives to conventional solar cells, because of their low cost, easy fabrication and relatively high energy conversion efficiency. However, although the cell offers reasonable efficiency at least 11%, the use of a liquid electrolyte placed technological challenges for achieving the desired durability and operational stability of the cell. In order to prevent or reduce electrolyte leakage considerable efforts have been made, such as p-type semiconductor or organic hole-transport material that better mechanical properties and simple fabrication processes. In this work, we synthesized solid-state electrolyte containing LiI and KI metal salt with starting materials of poly ethylene oxide to substitute liquid electrolyte enhance the ionic conductivity and solar conversion efficiency. Li+ leads to faster diffusion and higher efficiency and K+ leading to higher ionic conductivity. The efficiency of poly ethylene oxide/LiI system electrolyte is 1.47% and poly ethylene oxide/potassium electrolyte is 1.21%. An efficiency of 3.24% is achieved using solid-state electrolyte containing LiI and KI concentrations. The increased solar conversion efficiency is attributed to decreased crystallinity in the polymer that leads to enhanced charge transfer.

  • PDF

Study of Enhanced Photovoltaic Performance with Optimized Electrolytes and Blocking Layer Formation (차단막 형성과 전해질의 최적화에 의한 광전변환 효율 개선 연구)

  • Park, Hee-Dae;Joo, Bong-Hyun;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.50-54
    • /
    • 2013
  • In this work, the effects of blocking layer and optimally fabricated electrolyte were investigated with respect to impedance and conversion efficiency of the cells.A layer of $TiO_2$ less than ~200nm in thickness, as a blocking layer, was deposited by rf sputtering onto the F:$SnO_2$ (FTO) glass to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). Also, optimum condition of electrolytes preparation for DSCs was investigated. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as solvents for fabrication of electrolyte. The electrochemical impedances of DSCs using this photo-anode were $R_1$: 13.8, $R_2$: 15.1, $R_3$: 11.9 and $R_h$: $8.3{\Omega}$, respectively. The $R_2$ impedance related by electron transportation from porous $TiO_2$ to FTO showed lower than that of normal DSCs. The photo-conversion efficiency of prepared DSCs was 6.4% and approximately 1.3% higher than general one.

Synthesis of porous $TiO_2$ using organic-templating and application for dye-sensitized solar cells (유기물 템플레이트를 이용한 다공성 티타늄 산화물의 합성 및 염료감응 태양전지로의 적용)

  • Lee, Jin-Kyu;Oh, Jae-Kyung;Kim, Hyun-Su;Park, Kyung-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.147-149
    • /
    • 2009
  • 가수분해 및 응축반응을 사용하여 다공성의 TiO2입자를 합성하였다. 다공성 구조의 열적 영향을 살펴보기위해 annealing 시간을 조절하였고 태양전지에 적용하기 위해 paste로 만들었다. 그 구조적 특성을TEM(Transmission electron microscopy)과 XRD(X-ray diffraction) 통하여 분석하였고 광 전기화학적 활성을 측정해 보았다. 결과적으로 3시간 열처리한 시료의 효율이 최적화된 조건이였음을 확인하였다.

  • PDF

Properties of Working Electrodes with IGZO layers in a Dye Sensitized Solar Cell

  • Kim, Gunju;Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • We prepared a working electrode (WE) coated with 0 ~ 50 nm-thick indium gallium zinc oxide(IGZO) by using RF sputtering to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructure and composition of the IGZO layer. UV-VIS-NIR spectroscopy was used to determine the transparency of the WE with IGZO layers. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with IGZO layer. From the results of the microstructural analysis, we were able to confirm the successful deposition of an amorphous IGZO layer with the expected thickness and composition. From the UV-VIS-NIR analysis, we were able to verify that the transparency decreased when the thickness of IGZO increased, while the transparency was over 90% for all thicknesses. The photovoltaic results show that the ECE became 4.30% with the IGZO layer compared to 3.93% without the IGZO layer. As the results show that electron mobility increased when an IGZO layer was coated on the $TiO_2$ layer, it is confirmed that the ECE of a DSSC can be enhanced by employing an appropriate thickness of IGZO on the $TiO_2$ layer.

Properties of Working Electrodes with Nano YBO3:Eu3+ Phosphor in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.253-257
    • /
    • 2016
  • We added 0 ~ 5 wt% $YBO_3:Eu^{3+}$ nano powders in a scattering layer of a working electrode to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). FESEM and XRD were used to characterize the microstructure and phase. PL and micro Raman were used to determine the fluorescence and the composition of $YBO_3:Eu^{3+}$ phosphor. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with $YBO_3:Eu^{3+}$. From the results of the microstructure and phase of the fabricated $YBO_3:Eu^{3+}$ nano powders, we identified $YBO_3:Eu^{3+}$ having particle size less than 100 nm. Based on the microstructure and micro Raman results, we confirmed the existence of $YBO_3:Eu^{3+}$ in the scattering layer and found that it was dispersed uniformly. Through photovoltaic properties results, the maximum ECE was shown to be 5.20%, which can be compared to the value of 5.00% without $YBO_3:Eu^{3+}$. As these results are derived from conversion of light in the UV range into visible light by employing $YBO_3:Eu^{3+}$ in the scattering layer, these indicate that the ECE of a DSSC can be enhanced by employing an appropriate amount of $YBO_3:Eu^{3+}$.

Laser Sealing of Dye-Sensitized Solar Cell Panels Using V2O5 and TeO2 Contained Glass (V2O5 및 TeO2 함유 유리를 이용한 염료감응형 태양전지 패널의 레이저 봉착)

  • Cho, Sung Jin;Lee, Kyoung Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.170-176
    • /
    • 2014
  • Effective glass frit compositions enabled to absorb laser energy, and to seal a commercial dye-sensitized solar-cell-panel substrate were developed by using $V_2O_5$-based glasses with various amounts of $TeO_2$ substitution. The latter was intended to increase the lifetime of the solar cells. Substitution of $V_2O_5$ by $TeO_2$ provided a strong network structure for the glasses via the formation of tetrahedral pyramids in the glass, and changed the various glass properties, such as glass transition temperature ($T_g$), dilatometric softening point ($T_d$), crystallization temperature, coefficient of thermal expansion (CTE), and glass flowage without any detrimental effect on the laser absorption property of the glasses. The thermal expansion mismatch (${\Delta}{\alpha}$) between the glass frit and the substrate could be controlled within less than ${\pm}5%$ by addition of 10 wt% of ${\beta}$-eucryptite. An 810 nm diode laser was used for the sealing test. The laser sealing test revealed that the VZBT20 glass frit with 10 wt% ${\beta}$-eucryptite was successfully sealed the substrates without interfacial cracks and pores. The optimum sealing conditions were provided by a beam size of 3 mm, laser power of 40 watt, scan speed of 300 mm/s, and 200 irradiation cycles.

Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode

  • Choi, Dahyun;Park, Yoonchan;Lee, Minji;Kim, Kwangmin;Choi, Jung-Oh;Lee, Caroline Sunyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.643-650
    • /
    • 2018
  • A self-powered electrochromic device was fabricated on an indium tin oxide-polyethylene naphthalate flexible substrate using a dye-sensitized solar cell (DSSC) as a self-harvesting source; the electrochromic device was naturally bleached and operated under outdoor light conditions. The color of the organic electrochromic polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, was shifted from pale blue to deep blue with an antimony tin oxide film as a charge-balanced material. Electrochromic performance was enhanced by secondary doping using dimethyl sulfoxide. As a result, the device showed stable switching behavior with a high transmittance change difference of 40% at its specific wavelength of 630 nm for 6 hrs. To improve the efficiency of the solar cell, 1.0 wt.% of Ag NWs in the photoanode was applied to the $TiO_2$ photoanode. It resulted in an efficiency of 3.3%, leading to an operating voltage of 0.7 V under xenon lamp conditions. As a result, we built a standalone self-harvesting electrochromic system with the performance of transmittance switching of 29% at 630 nm, by connecting with two solar cells in a device. Thus, a self-harvesting and flexible device was fabricated to operate automatically under the irradiated/dark conditions.