• Title/Summary/Keyword: Dye oxidation

Search Result 114, Processing Time 0.022 seconds

Rapid Screening Method of Peroxidase by Colorimetric Assay and Screening of 2, 4-DCP Degradable Strains (발색법에 의한 Peroxidase의 신속한 스크리닝법과 2, 4-DCP 분해균주의 스크리닝)

  • Ryu, Kang;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.484-488
    • /
    • 2008
  • Chlorinated phenols are widely used by the chemical industry as intermediate products in synthesis and previously were frequently applied to various industry fields. Peroxidases catalyze the peroxide-dependent oxidation of a range of inorganic and organic compounds. Peroxidase was shown to mineralize a variety of recalcitrant aromatic compounds and to oxidize a number of polycyclic aromatic and phenolic compounds. Among monomeric phenolic and nonphenolic compounds, peroxidase is known to oxidize its compounds. In this study, a colorimetric assay was developed to quantitatively evaluate the peroxidase activity for rapid screening. Color products of different intensity were developed proportionally to the peroxidase activity on agar plate and 96-well plate. This method correlates well with the RP-HPLC result. Using this screening method, 12 colonies of strain was screened which survived at high concentration of 2,4-DCP (1000 ppm) and with peroxidase activity for the $7^{th}$ round screening step on agar plate. These strains were utilized 2,4-DCP as a sole carbon source and produced peroxidase. After the screening test, four of the bacteria have significant better effect of COD removal on dye waste-water. COD removal of these was from 44% to 61%, respectively.

Protective Effect of Resveratrol on the Oxidative Stress-Induced Inhibition of Gap Junctional Intercellular Communication in HaCaT Keratinocytes

  • Lee, Jong-Chan;Lee, Sun-Mee;Kim, Ji-Hyun;Ahn, Soo-Mi;Lee, Byeong-Gon;Chang, Ih-Seoup
    • Biomolecules & Therapeutics
    • /
    • v.11 no.4
    • /
    • pp.224-231
    • /
    • 2003
  • The aim of this study was to investigate the effect of resveratrol on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes. Anti-oxidative activity of resveratrol was measured by $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl assay and dichlorodihydrofluorescein diacetate oxidation assay. Gap junctional intercellular communication in HaCaT keratinocytes was assessed using the scrape loading/dye transfer technique. Western blots and reverse transcription-polymerase chain reaction were also analyzed for connexin 43 protein and mRNA expression, respectively. Resveratrol scavenged directly the stable $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl radical over a concentration range of 4 mg/ml ($78.2{\pm}2.7$% of control) to 500 mg/ml ($29.9{\pm}4.2$% of control) and decreased the intracellular reactive oxygen species induced by ultraviolet A (UVA) irradiation ($89.3{\pm}1.1$% of UVA group), ultraviolet B (UVB) irradiation ($70.9{\pm}1.7$% of UVB group) and 12-0-tet-radecanoylphorbol-13-acetate (TPA, $48.3{\pm}1.1$% of TPA group), respectively. UVA irradiation and TPA markedly reduced gap junctional intercellular communication, which was restored by resveratrol. There were no significant differences in the level of connexin 43 protein and mRNA expression among any of the experimental groups. Our data suggests that resveratrol has the protective effect on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes, and this protection is likely due to the scavenging of reactive oxygen species.

Synthesis and Characteristics of Pd/r-TiO2 Nanotube Arrays Hetrojunction Photocatalyst (Pd/r-TiO2 나노튜브 이종결합 광촉매의 합성과 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Jang, Kyung-Wook;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.14-22
    • /
    • 2022
  • To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.

Evaluation of the Bioactivity of Polygonium tinctorium Leaf: Potential Clinical Uses (쪽잎의 생리활성 평가)

  • Sung, Hwa-Jung;Choi, Ok-Ja;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.52-59
    • /
    • 2019
  • The leave of Polygonum tinctorium (LPT) have been used for centuries as a traditional medicine and as a food ingredient and natural dye. The aim of the current study was to develop high-value added products using LPT. Hot water extract (HWE) and ethanol extract (EE) of LPT were prepared, respectively, and their bioactivity was evaluated. The extraction ratio for the HWE was 27.6%, which was two-fold higher than that of the EE. The contents of total polyphenol in the HWE and total sugar in the EE were 51.2 mg/g and 297.8 mg/g, respectively. The total flavonoid and reducing sugar contents were similar in the extracts, irrespective of the extraction solvent. The HWE did not show antimicrobial activity in a disc-diffusion assay, but the EE showed strong growth inhibition against gram-positive bacteria. The EE exhibited stronger DPPH and ABTS radical scavenging activities and reducing power than those of the HWE. The HWE was particularly effective as a scavenger of nitrite ($RC_{50}$ of $6.0{\mu}g/ml$). In an antithrombosis activity assay, the EE showed significant anticoagulation activity as determined by an extended blood coagulation time (thrombin time, prothrombin time, and activated partial thromboplastin time), in addition to platelet aggregation activity. The HWE also showed platelet aggregation inhibitory activity. This report provides the first evidence of antithrombosis activities of LPT. Our results suggest that LPT has potential as a new antioxidant and antithrombosis agent.